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Introdution
This thesis fouses on the performane evaluation of a family of algorithms used to solvethe so-alled multiple aess problem present in nearly all ommuniation and omputernetworks. In order to de�ne the multiple aess problem onsider two nodes part of aommuniation network. Suh two nodes are onneted with eah other by a suession ofommuniations links, the physial media of whih an be oaxial able, opper wire, �beroptis and radio spetrum. Broadly speaking, two types of ommuniation network linksexist. A point-to-point link onsist of a single sender on one end of the link, and a singlereeiver at the other end of the link. The seond type of link, a shared link, an havemultiple sending and reeiving nodes all onneted to the same, single, shared link, e.g.,wired and wireless loal area networks (LANs), ellular aess networks (GSM,GPRS),passive optial networks (PONs) and hybrid �ber oaxial networks (HFCs). Whenevera network solely onsists of point-to-point links, there is no multiple aess problem.However, if one or more shared links are present, a problem of entral importane is howto oordinate the aess of multiple sending and reeiving nodes to a shared link. Thisproblem is known as the multiple aess problem. Protools, or algorithms, designed tosolve this problem are known as multiple aess protools.An important sublass of multiple aess protools are so-alled random aess protools(a de�nition is given in Chapter 1). The most ommonly used random aess protoolsare the ALOHA protools and the arrier sense multiple aess (CSMA) protools, e.g.,Ethernet. Within this thesis we analyze the performane of another family of randomaess algorithms ommonly known as tree algorithms and this both from a theoretialand a more pratial point of view. Tree algorithms were developed during the late 1970sand sine then a large body of literature has been devoted to them, espeially during the1980s. During the last �ve years they experiened yet another boost in attention with thedevelopment of hybrid �ber oaxial (HFC) and wireless (broadband) aess networks.Before we proeed with providing an overview of the ontents of this thesis, it is useful totake a step bak and �rst elaborate a bit about tree algorithms and their relation to themost important of all omputer networks: the publi Internet. We already indiated in theprevious paragraph that tree algorithms reeived a lot of attention with the development ofbroadband aess networks. Aess networks are generally ategorized into residential andompany aess networks. Nowadays, ompany aess networks are ompletely dominatedby Ethernet LANs. Until a few years ago, residential users were onneted to the publiInternet by means of a dialup modem over a POTS (plain old telephone system) or bymeans of an ISDN \telephone" line, whih an be though of as a \better modem" [33℄



ii INTRODUCTIONthat supports rates up to 128 Kbps ompared to the 56 Kbps dialup modems.Two new tehnologies, asymmetri digital subsriber line (ADSL) and hybrid �ber oax-ial able (HFC) have been deployed during the last few years. ADSL runs over existingtwisted-pair telephone lines and supports data rates between 2 and 8 Mbps from the Inter-net servie provider (ISP) to a home. In the reverse diretion the data rate is muh smaller(between 16 and 640 Kbps). From the MAC perspetive it is important to note that theuplink bandwidth, that is, from a home to the ISP, is not shared among di�erent homes.HFC aess networks di�erentiate themselves from ADSL, ISDN and dialup modems be-ause they are an extension of the urrent able networks used for broadasting abletelevision. HFC aess rates are omparable to ADSL, e.g., Motorola's CableCOMM sys-tem o�ers speeds downstream of up to 30 Mbps of whih up to 10 Mbps is available to anindividual modem and it runs smoothly upstream at a rate of up to 768 Kbps. However,with HFC, the upstream rates are shared among the homes. Therefore, a multiple aessprotool is required. Due to the limited upstream bandwidth, upstream transmissions arereservation based, that is, a user has to reserve a part of the uplink bandwidth wheneverit wants to transmit data. A mehanism, referred to as the aess mehanism, that allowsa user to reserve this bandwidth an be rather ompliated [21, 35, 36℄. However, a entralfeature of the aess mehanism is a random aess hannel.Formed in May 1994 by several vendors, the IEEE 802.14 Working Group (WG) devel-ops international standards for data ommuniations over ables, that is, HFC networks.Important for our disussion is that, after signi�ant deliberations, the group seleted atree based algorithm for the random aess hannel [20, 21℄. However, due to the delayedprogress of the IEEE 802.14 WG, four major able operators, Comast Cable Commu-niations, Cox Communiations, Tele-Communiations In., and Time Warner Cable,established the Multimedia Cable Network System (MCNS) Partners Ltd. in Deember1995 to reate the DOCSIS standard. The di�erenes between the DOCSIS standard andthe 802.14 draft were driven by organizational priorities. MCNS was aiming at keepingosts and market development to a minimum while IEEE was looking for a future-proofstandard. The two standards di�er the most in the medium aess ontrol (MAC) layer.Moreover, the DOCSIS standard replaed the tree algorithm by a simple binary exponen-tial bako� (BEB) algorithm1. Extensive simulation studies, onduted by the NationalInstitute of Standards and Tehnology (NIST), have indiated that the tree algorithmproposed by the IEEE 802.14 signi�antly outperforms the BEB algorithm in terms ofdelay and ell delay variation [20, 21℄. Given these results the MCNS nevertheless se-leted the BEB algorithm for its simpliity. Knowing that \time is money" for the MCNSPartners, this ame as no surprise.DOCSIS v1.0 was approved as a standard by the ITU on Marh 19, 1998, and urrentlydominates the market. In addition, DOCSIS v1.1, whose major feature is supportingQoS servie, was released on July 31, 1999. In ontrast, the IEEE 802.14 Working Groupwas disbanded in Marh 2000, and IEEE 802.14a will remain as a draft afterward. The1The BEB algorithm has been very suessful in Ethernet LANs, however, the eÆieny of EthernetLANs is mainly guaranteed by the arrier sense and ollision detetion (CSMA/CD) mehanism ombinedwith the limitations put on the length of a LAN segment. In HFC networks home users annot sense nordetet ollisions on the hannel.



iiigroup has areful intentions and its spei�ation is undoubtedly better than that devel-oped by MCNS from a tehnologial perspetive [36℄. Considering the European ableenvironment, the European Cable Communiation Assoiation (ECCA) started to reatethe EuroModem spei�ation in Deember 1998. The EuroModem v1.0 was approved bythe European Teleommuniations Standard Institute (ETSI) on May 12, 1999. The on-tention resolution algorithm used in the EuroModem spei�ation is the BEB algorithm.Having disussed the relevane of tree algorithms in nowadays ommuniation networks,we proeed with an overview of the ontents of this thesis. The thesis is subdivided intotwo parts. The �rst analyzes the maximum stable throughput of tree algorithms, oftenreferred to as their eÆieny, under a number of idealized onditions. These onditions areused as the standard model of a multiple aess link within the IEEE Information TheorySoiety [8℄; hene, the multiple aess problem is viewed from a theoretial perspetive.A large body of papers has been written on this topi. Chapter 1 provides an overview ofthe most signi�ant results and also inludes a short disussion on other random aessprotools not belonging to the lass of tree algorithms. The main di�erene with all priorwork is that we have signi�antly relaxed the assumptions made on the arrival proess|an arrival proess is a stohasti proess that spei�es how new pakets are generated bythe users (senders) onneted to the shared link. Instead of Poisson arrivals we onsidera rih lass of tratable Markovian arrival proesses, whih lend themselves very wellto modeling bursty arrival proesses arising in omputer and ommuniation networks|namely, we onsider disrete time bath Markovian arrival proesses (D-BMAPs). Treealgorithms an be further ategorized into three sublasses: the bloked aess, free aessand grouped aess lass. The methods used to analyze the �rst sublass|see Chapter2|are fairly ommon and originated in the early 1980s [41℄. To a ertain extent the samean be said about the grouped aess lass (although some ompliations do arise, seeChapter 5). The free aess lass is by far the most diÆult to analyze (given the urrentstate of the art results) and requested a very di�erent and new approah, Chapters 3and 4 are devoted to them. The key result is to view a tree algorithm with free aessas a tree strutured quasi-birth-death (QBD) Markov hain, the theory of whih wasdeveloped during the late 1990s, and to study the stability of the algorithm by means ofthe reurrene of the Markov hain. The main onlusion drawn from the �rst part of thethesis is that the good stability harateristis of tree algorithms under Poisson arrivalsare maintained under this rih lass of arrival proesses, thereby further extending theestablished theoretial foundation of tree algorithms. More detailed onlusions and keyresults are found at the end of eah hapter.In the seond part of the thesis, we study tree algorithms from a more pratial per-spetive. Many aess systems|for instane, wireless broadband systems, hybrid �beroaxial (HFC) networks or passive optial networks (PONs)|have a point-to-multipointarhiteture. The single end point, referred to as the aess point (AP), operates as aentralized ontroller, that is, it deides whih of the end nodes gets to transmit a paketto the AP. To make this deision, end nodes need to delare their bandwidth requirementsto the aess point (AP). This information is then used by the AP to shedule all uplinktransmissions, that is, transmissions from an end node to the AP, aording to the traÆharateristis and the quality of servie (QoS) agreed upon. A problem of entral impor-tane is how the end nodes inform the AP about their bandwidth needs, a problem that



iv INTRODUCTIONhas reeived onsiderable attention of the IEEE Communiation Soiety. In the seondpart of this thesis, we address this problem in the ontext of wireless broadband aessnetworks and we provide a detailed analysis of the Identi�er Splitting Algorithm ombinedwith Polling (ISAP). The Identi�er Splitting Algorithm is a tree algorithm that was intro-dued during the European RACE projet 2067 on Mobile Broadband Systems (MBS).We have enhaned this algorithm with a polling mehanism and studied the inuene ofits parameters on the delay and throughput harateristis by means of several analytialmodels. These models ombine elementary probability theory, queueing theory, ombi-natoris and the theory of Markov hains. The ISAP sheme is introdued in Chapter 6.Several analytial models that allow its evaluation are presented in Chapter 7, whereas inChapter 8 we disuss the inuene of the di�erent protool parameters by means of theanalytial models presented in Chapter 7.Before we proeed, there are a few people I would like to thank. First of all, I thank mypromotor Chris Blondia for giving me the oppertunity to write a PhD (and to \at" likean assistant at the UIA for the past few years) and for introduing me to a number ofmathematial approahes suh as the matrix analytial methods. David V�azquez Cortizofor the useful disussions we had during his stay at the University of Antwerp. Moreover,I would like to express my gratitude to a number of international researhers for providingme with the neessary study material, espeially P. Flajolet, J.M. Massey, M. Sidi, Q. Heand M. Neuts. I also like to thank most of my olleagues at the University of Antwerpfor the nie working atmosphere (in alphabetial order): David, Dennis, Floris, Hetor,Joeri, Johan, Kathleen, Mar, Nio, Peter, Raf, Sandra, Stefan, Stijn, Tim, Toon andmany more. Finally, I'm very grateful for the support I got from Lesley, my family andfriends.



Contents
Introdution iI Stability of Tree Algorithms under Disrete time BathMarkovian Arrival (D-BMAP) traÆ 11 Random Aess Algorithms: Introdution 31.1 Medium Aess Control (MAC) . . . . . . . . . . . . . . . . . . . . . . . . 31.2 The ALOHA Protools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Aknowledgement-based, Bako� and Age-based Algorithms . . . . . . . . 61.4 Tree Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.4.1 The Basi Q-ary CTM or Tree Algorithm . . . . . . . . . . . . . . . 101.4.2 The Modi�ed Q-ary CTM or Tree Algorithm . . . . . . . . . . . . . 111.4.3 Estimating the Multipliity of Conits to Speed Their Resolution . 121.4.4 Grouping on Arrival Times . . . . . . . . . . . . . . . . . . . . . . . 141.4.5 The Deterministi Tree Algorithm . . . . . . . . . . . . . . . . . . . 151.5 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 D-BMAPs and Bloked Aess 172.1 D-BMAPs: De�nition, Properties and Examples . . . . . . . . . . . . . . . 172.1.1 A De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.2 Some Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.3 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2 D-BMAPs as Aess Network Input TraÆ . . . . . . . . . . . . . . . . . . 21v



vi CONTENTS2.3 D-BMAPs and Bloked Aess Algorithms . . . . . . . . . . . . . . . . . . 212.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Basi Binary CTM with Free Aess 273.1 The Basi Binary CTM Algorithm with Free Aess . . . . . . . . . . . . . 273.2 QBD with a Tree Struture . . . . . . . . . . . . . . . . . . . . . . . . . . 293.3 Markovian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303.3.1 A First Attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.3.2 The Atual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.4 The Stationary Distribution of the Queue String . . . . . . . . . . . . . . . 353.5 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.6 Performane Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.6.1 The Fundamental Period and Mean Delay . . . . . . . . . . . . . . 383.6.2 Other Performane Measures . . . . . . . . . . . . . . . . . . . . . 403.6.3 The State of the Auxiliary Variable at Arrival Times . . . . . . . . 413.7 Numerial Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.7.1 The Disrete Time Poisson Proess . . . . . . . . . . . . . . . . . . 423.7.2 The Disrete Time Erlang Proess . . . . . . . . . . . . . . . . . . . 423.7.3 The Disrete Time Markov Modulated Poisson Proess . . . . . . . 433.7.4 The Bulk Arrival Proess . . . . . . . . . . . . . . . . . . . . . . . . 443.7.5 Summary for Fair Coins . . . . . . . . . . . . . . . . . . . . . . . . 443.7.6 Using Biased Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.8 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Q-ary Tree algorithms and Free Aess 494.1 The Basi and Modi�ed Q-ary CTM Algorithm . . . . . . . . . . . . . . . 494.1.1 The Basi Q-ary CTM Algorithm with Free Aess . . . . . . . . . 504.1.2 The Modi�ed Q-ary CTM Algorithm with Free Aess . . . . . . . 504.2 Analysis of the Basi and Modi�ed Q-ary CTM Algorithm . . . . . . . . . 514.2.1 The Basi CTM algorithm with Q > 2 . . . . . . . . . . . . . . . . 52



CONTENTS vii4.2.2 The Modi�ed CTM Algorithm with Q = 2 . . . . . . . . . . . . . . 554.2.3 The Modi�ed CTM Algorithm with Q = 3 . . . . . . . . . . . . . . 574.2.4 The Modi�ed CTM Algorithm with Q > 3 . . . . . . . . . . . . . . 584.2.5 Stability of a Tree Strutured QBD Markov Chain . . . . . . . . . . 604.3 Numerial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.3.1 The Basi CTM Algorithm with Fair Coins . . . . . . . . . . . . . . 624.3.2 The Modi�ed CTM Algorithm with Fair Coins . . . . . . . . . . . . 664.3.3 Using Biased Coins . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 Tree Algorithms and Grouping 715.1 Tree algorithms using a Grouping Strategy . . . . . . . . . . . . . . . . . . 715.2 Stability under D-BMAP TraÆ . . . . . . . . . . . . . . . . . . . . . . . . 725.2.1 A stability Condition for D-BMAP Input . . . . . . . . . . . . . . . 725.2.2 Tight Bounds on E[G℄ . . . . . . . . . . . . . . . . . . . . . . . . . 735.3 Numerial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745.3.1 Seleting a Large Grouping Interval � . . . . . . . . . . . . . . . . 755.3.2 Seleting a Small Grouping Interval � . . . . . . . . . . . . . . . . 765.4 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79II Tree Algorithms in Wireless Aess Networks 816 The ISAP Algorithm 836.1 A Delayed Feedbak Environment . . . . . . . . . . . . . . . . . . . . . . . 846.2 The ISA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.3 The ISAP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876.4 Skipping the First Few Levels . . . . . . . . . . . . . . . . . . . . . . . . . 886.5 Multiple Instanes of ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.6 MS Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906.7 More Optional Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



viii CONTENTS7 The ISAP Algorithm: Analysis 937.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937.2 Analysis of the Binary ISAP Protool . . . . . . . . . . . . . . . . . . . . . 957.2.1 The Identi�er Splitting Algorithm (ISA) . . . . . . . . . . . . . . . 957.2.2 The Identi�er Splitting Algorithm ombined with Polling . . . . . . 987.2.3 Skipping the First Few Levels (STATIC) . . . . . . . . . . . . . . . 1037.2.4 Skipping the First Few Levels (DYNAMIC) . . . . . . . . . . . . . 1047.2.5 Delay and Throughput for Multiple Instanes . . . . . . . . . . . . 1067.3 Analysis of the Q-ary ISAP Protool . . . . . . . . . . . . . . . . . . . . . 1067.3.1 The Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.3.2 The Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . 1107.4 Analysis of the Optional Parameter Mp . . . . . . . . . . . . . . . . . . . . 1127.4.1 Delay and Throughput Analysis . . . . . . . . . . . . . . . . . . . . 1127.5 Analysis of the Impat of L . . . . . . . . . . . . . . . . . . . . . . . . . . 1137.5.1 Delay and Throughput Measures . . . . . . . . . . . . . . . . . . . 1148 The ISAP algorithm: Results 1178.1 Results for the Binary ISAP Sheme . . . . . . . . . . . . . . . . . . . . . 1178.1.1 The Inuene of the Polling Threshold on the System Performane 1188.1.2 The Inuene of Skipping Levels (STATIC) on the System Perfor-mane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198.1.3 The Inuene of Skipping Levels (DYNAMIC) on the System Per-formane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208.1.4 The inuene of Multiple Instanes of ISA on the System Performane1218.2 Results for the Q-ary ISAP Sheme . . . . . . . . . . . . . . . . . . . . . . 1218.2.1 The Inuene of the Splitting Fator and the Polling Threshold onthe System Performane . . . . . . . . . . . . . . . . . . . . . . . . 1228.2.2 The Interation between the Splitting Fator and the Starting Level 1238.3 Results for the M -ISAP Sheme . . . . . . . . . . . . . . . . . . . . . . . . 1248.4 The Inuene of L on ISAP . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.4.1 Tuning the Trigger Value Np . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS ix8.4.2 The Inuene of the Parameter L . . . . . . . . . . . . . . . . . . . 1278.4.3 Seleting the Starting Level Sl . . . . . . . . . . . . . . . . . . . . . 1288.4.4 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298.5 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Conlusion 133Nederlandse Samenvatting 135Bibliography 142





Part IStability of Tree Algorithms underDisrete time Bath MarkovianArrival (D-BMAP) traÆ
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Chapter 1An Introdution to Random AessAlgorithms
In this hapter we present a general introdution to random aess algorithms. It is notour intention to provide a omplete overview of all existing random aess algorithms,nor to present them in a hronologial order. Extensive overviews of random aessalgorithms an be found in [3, 63℄. The emphasis of this introdution is on a family ofrandom aess algorithms ommonly known as tree or splitting algorithms and on theirstability harateristis. Before introduing the onept of a tree algorithm, we disussthe �rst, and one of the most popular, of all random aess algorithms: the notoriousALOHA protool. Some attention is also paid to aknowledgement-based, bako� andage-based algorithms. The hapter starts with a simple desription of what a mediumaess ontrol (MAC) protool, or more spei� a random aess algorithm, is supposedto do.1.1 Medium Aess Control (MAC)Broadly speaking, two types of network ommuniation links exist. A point-to-point linkonsist of a single sender on one end of the link, and a single reeiver at the other end ofthe link. The seond type of link, a shared link, an have multiple sending and reeivingnodes all onneted to the same single, shared link. A shared link is often referred to as ashared medium. In the �rst senario|that of the point-to-point link|there is no mediumaess ontrol (MAC) layer present in the orresponding protool stak. In the seondsenario|that of the shared medium|multiple nodes might transmit simultaneously onthe same link. A problem of entral importane, to the data link layer, is how to oordinatethe aess of multiple sending and reeiving nodes to a shared hannel|the so-alledmultiple aess problem. It is the task of the medium aess ontrol layer to regulate alltransmissions on the shared link; i.e., to solve the multiple aess problem. The MediumAess Control (MAC) sublayer is part of the data link layer in the ISO-OSI model [33, 63℄.Sine the early 1970s many MAC protools have aroused. Most of them an be atego-



4 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONrized as either being ontention protools or ontention free protools. Consider a sharedlink with a rate of R bits per seond. In a ontention protool, or random aess protool,nodes always transmit at the full rate R of the link and are allowed to transmit simulta-neously, although simultaneous transmissions seldom lead to a suessful reeption (theapture e�et of a wireless hannel is one of the few exeptions [49℄). These simultane-ous transmissions are referred to as ollisions. Contention free protools avoid ollisions.There are two main protool lasses that avoid ollision [33℄. The �rst partitions the han-nel among all nodes sharing the link, e.g., time-division multiplexing (TDM), frequeny-division multiplexing (FDM) or ode-division multiplexing (CDM). The seond lass isknown as the taking-turns protools and allows nodes to use the hannel during its turn,e.g., polling protools and token-passing protools. The main disadvantage of many on-tention free protools is the low utilization of the network link. Both ategories haveproven their worth in a myriad of multiple aess appliations. More details are providedin the next few setions. In the remainder of this hapter an X hannel refers to a hannelupon whih the MAC protool X is being used (in literature the term ALOHA hannelis sometimes also used for a hannel that has ertain harateristis).Muh attention has been paid to the stability of random aess algorithms. A randomaess sheme is said to be stable if the mean time until a paket is transmitted suessfullyis �nite. Underlying all the work done in this area are the following key assumptions [63℄:� New arrivals our aording to a Poisson proess with rate �.� The number of nodes or stations is assumed to be in�nite. In pratie, the numberof nodes is always �nite. Assuming an in�nite number provides us with an upperbound to the delay [3℄. In partiular, eah �nite set of nodes an regard itself asan in�nite set of virtual stations, one for eah arriving paket. This situation isequivalent to the in�nite node assumption and allows a station with bakloggedpakets to ompete with itself.� A single error free ontention hannel provides immediate binary (ollision or not)or ternary (ollision, suess or empty) feedbak.A lot an be|and has been|said about these assumptions and they are far from beingthe most realisti ones, but at least they provide us with a ommon framework in whihwe an make a fair omparison among di�erent random aess algorithms. When wedisuss the stability of an algorithm under Poisson input traÆ we atually refer to thisommon framework.1.2 The ALOHA ProtoolsThis setion is based on [3, 16, 41, 42, 63℄. During the early days of ommuniation net-works (i.e., the old telephone networks) nodes were always onneted using point-to-pointonnetions. It was not until 1968, around the same period of time the �rst nodes of theARPANET [32℄ were onneted, that the �rst random aess protool, known as pure



1.2. THE ALOHA PROTOCOLS 5ALOHA [1℄, ame into existene. At the University of Hawaii researhes were planningto interonnet a number of data terminals (stations), loated on di�erent isles, with theentral omputer by means of radio ommuniation. The radio hannel was to be sharedamong all stations. They proposed the following sheme to regulate all transmissions onthe shared radio hannel.A station simply transmits whenever it has data to send. As stations send their framesat arbitrary times, there will be ollisions. Frames involved in a ollision are onsideredas destroyed and need to be retransmitted. The overlap between the olliding frames isirrelevant, namely, in all ases the heksum will fail and indiate that a retransmission isrequired. In order to redue the number of ollisions, stations retransmit a frame after arandom delay between 0 and a prede�ned parameter Æ. Stations that need to retransmittheir frame are referred to as baklogged stations.Assuming �xed length frames, pure ALOHA has a vulnerable period of 2 frames. Abram-son indiated that the maximum throughput of a pure ALOHA hannel (under PoissontraÆ) is 1=2e, i.e., about 18%, under what is alled the equilibrium hypothesis. Thishypothesis atually expresses the hope that the ALOHA hannel is stable, i.e., that themean waiting time of a paket is �nite or in other words that the queue of frames awaitingretransmission is not growing steadily. As it turns out, ALOHA's simpliity auses it tobe unstable for every arrival rate � > 0 under Poisson input.Roberts modi�ed the ALOHA system by introduing the notion of \time slotting", thismodi�ed version is known as slotted ALOHA. Assuming �xed length frames, we hoosethis length as the unit of time. Stations are only allowed to start transmitting at amultiple of the time unit, thereby reduing the vulnerable period to a single frame andaugmenting the maximum ahievable throughput to 1=e, i.e., about 36%, under the equi-librium hypothesis. Again, slotted ALOHA turned out to be unstable for all arrival rates� > 0. There is also a geometri variant of Slotted ALOHA, where baklogged stationsretransmit in eah time slot with a probability p (p = 1=Æ). A simple proof that thegeometri variant of the slotted ALOHA system is unstable for all arrival rates � > 0 isgiven below.In a slotted ALOHA system baklogged stations retransmit their frame in eah slot with aprobability p. Let ai be the probability that i new arrivals our in a slot. The number ofnew arrivals ourring in slot i and slot i+1 are independent and identially distributed.N(t), the number of baklogged stations during time slot t, is therefore a Markov hainon the state spae fn j n � 0g with the following transition probabilities Pk;lPk;k�1 = a0kp(1� p)k�1;Pk;k = a0(1� kp(1� p)k�1) + a1(1� p)k;Pk;k+1 = a1(1� (1� p)k);Pk;k+j = aj (j � 2):For 0 < p < 1 and a0 + a1 < 1, N(t) is an aperiodi irreduible Markov hain and slottedALOHA is stable if and only if this Markov hain is ergodi. Obviously, for k large enough,Pk;k�1 < 1�a0�a1 =Pj�2 Pk;k+j beause Pk;k�1 dereases to zero. Moreover, Pk;k�i = 0



6 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONfor i > 1. Therefore, the Markov hain N(t) does not have a stationary distribution asa result of the Instability Lemma by Kaplan [3, p265℄. This is suÆient to prove slottedALOHA's instability for every arrival proess with a0 + a1 < 1, in partiular for thePoisson arrival proess with a mean � > 0 (ai = �i=i! e��).Kelly further improved this result by showing that the number of suessful transmissionson an AHOLA hannel is �nite with probability 1. In onlusion, eventually an ALOHAhannel beomes jammed with ollisions. The time that elapses before this ours anhowever be very large. For instane, Greenberg and Weiss have shown that for p = 0:01and � = 0:1 it takes about e346 time slots before the hannel is \jammed" with ollisions.Numerous proposals have been made to stabilize ALOHA, eah one proposing a di�erentmethod on how to estimate the number of baklogged stations. None of them sueed inkeeping the virtue of the original ALOHA shemes: their simpliity.ALOHA systems are nevertheless often implemented in pratie, although most of themappear in fat to be unstable. In order to ope with the instability, they implement somekind of \time out" feature that lears the system if totally jammed with ollisions. Thissolution works �ne when the traÆ intensity|that is, the rate of the new arrivals|andthe retransmission probability p is low.1.3 Aknowledgement-based, Bako� and Age-basedAlgorithmsAnother important random aess sheme, known as Ethernet, was introdued in 1979by Metalfe (Harvard) [45℄. Stations making use of an Ethernet hannel postpone thei-th retransmission attempt for a random time between 0 and 2i time units, as opposedto 0 and Æ on an ALOHA hannel. Ten years after the introdution of Ethernet, Aldous(Berkeley) [2℄ proved that Ethernet was unstable for all arrival rates � > 0 under Poissonarrivals. The instability of Ethernet is not as severe as that of ALOHA. For instane,Kelly and MaPhee [30℄ have shown that the number of suessful transmissions is �nite,resp. in�nite, with probability 1 if � > ln 2 = :69, resp. � < ln 2 = :69, for the slotted ver-sion of Ethernet. Whereas the number of suessful transmissions on an ALOHA hannelis �nite with probability 1 for all � > 0. In pratie, Ethernet frames are dropped if thenumber of retransmission attempts reahes a prede�ned threshold. ALOHA and Ether-net both belong to a lass of algorithms known as aknowledgement-based algorithms1.In an aknowledgement-based algorithm, users make retransmission deisions using onlythe history of their own transmission attempts|that is, users only reeive feedbak fromthe hannel indiating whether their own transmission attempts are suessful or not.Other algorithms that listen to the feedbak of every slot are referred to as full-sensingalgorithms (examples are the tree algorithms presented in the next setion). Reently,Goldberg et al [19℄ have shown that all aknowledgement-based algorithms are unstable1Notes on ontention resolution written by L.A. Goldberg from the Warwik University were veryuseful in writing the remainder of this setion. The notes are unpublished and a opy an be found ather webpage: http://www.ds.warwik.a.uk/�leslie.



1.4. TREE ALGORITHMS 7for � > :530045 under Poisson input. Moreover, not even one aknowledgement-basedalgorithm is known so far to be provably stable for any arrival rate � > 0 under PoissontraÆ.An important sublass of the aknowledment-based algorithms are the bako� algorithms.A bako� algorithm is assoiated with a sequene of probabilities pi, i � 0. In a given timeslot of the orresponding algorithm, every station that has a paket ready for transmis-sion and that has been unsuessful in transmitting this paket on i oasions transmits(independently) with probability pi. Obviously, slotted ALOHA and Ethernet are bak-o� algorithms with pi = p and pi = 2�i respetively. It has been shown that bako�algorithms are always unstable under Poisson traÆ for � � :42 [19℄. Tree algorithmsare therefore superior to bako� algorithms|from the stability point of view|beausethere are many tree algorithms known that support higher input rates (up to :48776, seeSetion 1.4). In 1989 MaPhee posed the question whether there exists a bako� algo-rithm that is stable for any � > 0. The answer to this question is still unknown. Kelly,et al [30℄ have shown that all bako� algorithms with slower than exponential bako�result in a �nite number of suessful transmissions with probability 1. For instane,setting pi = (i + 1)�k; k � 1; results in a �nite number of suessful transmissions (withprobability 1).Another interesting sublass are the age-based algorithms. An age-based algorithm isassoiated with a sequene of probabilities pi; i � 0: In a given time slot of the orre-sponding algorithm, every station (re)transmits (independently) with probability pi if thepaket was generated i time slots ago. Kelly and MaPhee have shown that the numberof suessful transmissions is �nite if and only if Pti=1 pi, i.e., the expeted number oftransmissions that a paket endures in the �rst t slots after being generated, is 
(log(t))2(2 this is a footnote mark). Ingenoso has shown that age-based algorithms are unstable ifpi; i � 0; is monotonially dereasing. For instane, setting pi = a=i results in an in�nitenumber of suesses beause Pti=1 1=i = log t + O(1), but the algorithm is neverthelessunstable.1.4 Tree AlgorithmsThe breakthrough in searhing for a random aess sheme that was provably stable wasmade by Capetanakis [7℄ in 1977 and independently by Tsybakov and Mikhailov [64℄ andto some extent by Hayes [3℄. The basi idea behind this sheme was already used byDorfman during the Seond World War for testing soldiers for syphilis [12, 63℄ and is analgorithm for what is known as the group testing problem. The group testing problemstudies algorithms to �nd d defets in a population of size N as fast as possible. A singletest on a group of n indiates whether there is at least one defet in the group of sizen. For instane, the syphilis soldiers are the defets among all soldiers. Dorfman usedthe following method: take a blood sample from N soldiers and mix a portion of eahsample into a single sample. Next, test this sample for syphilis. If negative, all soldiers are2A funtion f(t) = 
(g(t)) if 8 > 0 9N : f(t) � g(t) for t � N .



8 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONleared. Otherwise reate two samples: one by mixing a portion of the �rst N/2 soldierstogether, the seond using the portions of the last N/2 soldiers. This algorithm is appliedreursively until the identity of all the syphilis soldiers is known. Whether this algorithmminimizes the number of tests required, for d > 1, is still an open issue. For d = 1 it isproven to be the fastest possible.When translated to a omputer network this algorithm goes as follows: whenever a groupof n stations ollides, they split into 2 groups. Eah station draws a pseudo randomnumber to deide whether it joins the �rst or the seond group. Stations joining the �rstgroup retransmit in the next slot and resolve a possible ollision reursively, while theother stations wait until the �rst group is resolved before applying the same algorithm.A station joins the �rst, resp. the seond, group with probability p1, resp. p2 = 1 � p1.Whenever a station selets a group it is said to ip a oin. For p1 = 1=2 the oin is saidto be fair, otherwise it is referred to as biased. The ollision resolution algorithm (CRA)desribed above is known as the basi binary Capetanakis-Tsybakov-Mikhailov (CTM)or tree algorithm. It an be ombined with di�erent hannel aess protools (CAPs). Ahannel aess protool indiates when a newly arrived paket is allowed to transmit forthe �rst time.For now we disuss the following two CAPs:� Bloked Aess: After an initial ollision of n stations, all new arrivals postpone their�rst transmission attempt until the n initial stations have resolved their ollision.The time elapsed from the initial ollision until the point where the n stations havetransmitted suessfully is alled the ollision resolution interval (CRI). Supposethat m new pakets are generated during the CRI. Then, a new CRI starts (with mpartiipants) when the previous CRI (with n stations involved) ends. In onlusion,when the bloked aess mode is used new arrivals are bloked until the CRI duringwhih they arrived has ended. They will partiipate in the next CRI.� Free Aess: New arrivals transmit the moment they are generated, i.e., at the �rstslot boundary following their arrival time. Thus, if k new arrivals our during slot iand the n stations that transmitted in slot i split into a group of n1 and n2 stations,n1 + k stations will transmit in slot i+ 1.Di�erent terminology is used when these hannel aess protools (CAPs) are ombinedwith a tree algorithm. For instane, the bloked aess shemes are also referred to astree-searh algorithms, the free aess shemes as stak algorithms [35℄. Implementationdetails and examples are provided in Chapter 3. Binary feedbak (ollision or not) suÆesin order to implement the basi binary tree algorithm with bloked or free aess. Manyother tree algorithms have aroused from this initial one. An overview is presented Setions1.4.1 to 1.4.5.An important result for the Poisson input traÆ that applies to any random aess shemeimplementing a bloked aess strategy is the following [22, 41℄. If a onit resolutionalgorithm (CRA) has an expeted running time T (n), to resolve n partiipants, thenthe orresponding random aess algorithm with bloked aess is stable for all � <



1.4. TREE ALGORITHMS 9lim inf n=T (n) and is unstable for � > lim supn=T (n). The expression for T (n) dependsupon the onit resolution algorithm. Whatever happens for an arrival rate � betweenthe liminf and the limsup of n=T (n) is unlear (although in some partiular ases somelight was shed on this gray area, see [43℄). For some CRAs n=T (n) does have a limit3 forn!1, i.e., the gray area disappears, but this is not always the ase4 (although the sizeof the gray area tends to be rather small in suh ases). In Chapter 2 we will generalizethis result to a more general lass of arrival proesses.The key result in studying the stability of the basi CTM algorithm with bloked aesswas, strangely enough, already obtained by Knuth in 1973 [17℄. The reason is the general-ity of the reursive proess based on random hoies that turns out to be the exat modelfor a variety of searhing algorithms in omputer siene. Let lN denote the expetednumber of slots required to solve a ollision of N stations. Knuth showed that lN satis�esthe following equation asymptotially (for p1 = 1=2, i.e., fair oins):lN = 2ln 2N +NP (log2N) +O(pN); (1.1)with P (�) a periodi funtion with an amplitude < 10�5. Combining this result withthe property mentioned in the previous paragraph, shows that the CTM algorithm withbloked aess (and fair oins) is stable for � < ln 2=2 � 10�5 and unstable for � >ln 2=2 + 10�5 under Poisson traÆ. In Chapter 3, we prove that this result is not merelyvalid for the Poisson arrival proess. Knuth's result was however not ommonly known atthe time. For instane, in 1981 Massey [41℄ showed that the CTM algorithm with blokedaess was stable under Poisson input for � < :3465 and unstable for � > :3471. In thispaper Massey mentions that W. Sandrin of the Comsat Laboratories pointed out thatln 2=2 � :3465735. In 1985 Mathys and Flajolet [13, 43℄ showed that the best stabilityresults for the Poisson input traÆ are obtained with fair oins, i.e., p1 = 1=2.In general, studying the stability of a random aess sheme with free aess is morediÆult ompared to a bloked aess sheme. In 1985 Mathys and Flajolet [13, 43℄eventually showed that the basi binary CTM algorithm with free aess, also referredto as the binary stak algorithm, is stable under Poisson input traÆ (and fair oins) for� < :360. Moreover, for the Poisson traÆ fair oins are the optimal oins; that is, theyahieve the highest maximum stable throughput. In Chapter 3, we show that both theseresults are not valid for other arrival proesses. Chapter 3 presents analytial methodsthat allow us, among other things, to determine the stability of the basi binary CTMalgorithm with free aess for a variety of arrival proesses.3For instane, when slotted ALOHA is ombined with bloked aess, it is easy to showlimn!1 n=T (n) < limn!1 n2p e(n�1) ln(1�p) = 0. Therefore, slotted ALOHA with bloked aess isunstable for all arrival rates � > 0, whatever the value of the retransmission probability p.4In 1980 Vvedenskaya [41℄ was the �rst to prove that limn!1 n=T (n) does not exist for many treealgorithms. However, a lot of the Russian results were unknown to the Western world for quite sometime.



10 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTION1.4.1 The Basi Q-ary CTM or Tree AlgorithmA �rst of many generalizations of the basi binary tree algorithm is the basi Q-arytree algorithm. This generalization onsists of splitting the set of stations involved in aollision into Q|instead of two|groups. Stations part of the i-th group postpone anyretransmission attempts until the �rst i� 1 groups have been resolved. A station seletsthe i-th group with a probability pi. Whenever p1 = p2 = : : : = pQ = 1=Q one talksabout fair oins, otherwise about biased oins. For the new paket arrivals one an eitheruse free or bloked aess. The stability properties of the basi Q-ary tree algorithm wererevealed by Mathys and Flajolet [43℄ in 1985 and an be summarized as follows.We start with the basi Q-ary tree algorithm with bloked aess. Let lN denote theexpeted number of slots required to solve a ollision of N stations. Then, lN=N satis�esthe following equation asymptotially:lN=N = Q�PQi=1 pi ln pi + f1(N) +O(N�1); (1.2)with f1(N) a utuating funtion of small amplitude, between 10�3 and 10�6. Due to theproperty of any bloked aess algorithm we �nd that the basi Q-ary tree algorithm isstable for � < �P pi ln pi=Q � � and unstable � > �P pi ln pi=Q + �, for some � small,under Poisson input traÆ. The sum �PQi=1 pi ln pi reahes a maximum equal to lnQ=Qfor pi = 1=Q, 1 � i � Q. Therefore, the basi Q-ary tree algorithm (with fair oins) isstable for arrival rates up to � � lnQ=Q. The highest arrival rates (up to :3662) anbe supported by the ternary sheme, i.e., Q = 3, followed by the binary and quaternaryshemes who both support rates up to :3466. For Q = 5 we get :3218 and the maximumahievable throughput lnQ=Q further dereases for higher splitting fators Q (see Table1.1 and Figure 1.1).
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Figure 1.1: Inuene of the Splitting Fator on the Maximum Stable Throughput for theBasi Q-ary CTM AlgorithmAs noted before, the maximum ahievable throughput of a random aess sheme withbloked aess (under Poisson traÆ) is found by studying the asymptoti behavior of



1.4. TREE ALGORITHMS 11Q basi bloked aess basi free aess mod. bloked aess mod. free aess2 .3466 .3602 .3754 .38723 .3662 .4016 .3741 .40704 .3466 .3992 .3496 .40075 .3219 .3872 .3233 .38786 .2986 .3734 .2994 .37367 .2780 .3597 .2784 .35988 .2600 .3470 .2602 .34719 .2441 .3353 .2443 .335310 .2303 .3246 .2304 .3246Table 1.1: Maximum ahievable throughput for the basi and the modi�ed Q-ary treealgorithm with fair oinsn=T (n), where T (n) is the expeted runtime of the onit resolution algorithm (CRA)required to resolve the ontention between n partiipants. This runtime T (n) is alsoreferred to as the expeted length of a ollision resolution interval (CRI) initiated byn partiipants. For free aess algorithms a CRI is generally de�ned as the time thatelapses between two suessive time instanes for whih none of the stations has a paketready for transmission. A random aess algorithm with free aess is stable wheneverthe expeted length of an arbitrary CRI is �nite, otherwise it is unstable (an asymptotianalysis of the length of a CRI is not required). The results for the basi Q-ary CTMalgorithm with free aess are presented in Table 1.1. Fair oins ahieve the best stabilityresults.1.4.2 The Modi�ed Q-ary CTM or Tree AlgorithmThe basi Q-ary tree algorithm exploits binary feedbak (ollision or not). It an beimproved by exploiting ternary (ollision, suess or empty) feedbak whenever available[3, 41℄. The algorithm that exploits ternary feedbak is referred to as the modi�ed Q-ary tree algorithm. It an be ombined with both bloked and free aess and worksas follows. If, after a ollision, the next Q � 1 slots turn out to be empty|that is, allstations involved in the ollision hose the last group and no new arrivals ourred if thefree aess strategy is used|the next slot must ontain a ollision if the basi Q-ary CTMalgorithm is used as the onit resolution algorithm. This otherwise doomed slot an beskipped by having all stations at as if the ollision had ourred. Obviously, the modi�edsheme performs at least as well as the basi algorithm. Surprisingly, Capetanakis failedto notie the existene of ertain-to-our ollisions in his algorithm. Massey [41℄ was the�rst to point this out, whereas Tsybakov and Mikhailov disovered this independently; asa onsequene the modi�ed CTM algorithm is also referred to as the CMTM (Cap-Mas-Tsy-Mik) algorithm.In pratie, this improvement has a slight problem, when ombined with the bloked aessstrategy, in that if an idle slot is inorretly pereived by the reeiver as a ollision|this



12 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONmight happen in an environment in whih errors our|the algorithm ontinues splittinginde�nitely. Let us explain this phenomenon. Suppose that an empty slot is pereivedas a ollision due to an error in the hannel. As a result all stations, inluding thosegenerating new arrivals, wait until the set of stations involved in this ollision is resolved,but this set is an empty set. Therefore, the next Q � 1 slots are empty (new arrivalsare bloked) and the modi�ed algorithm kiks in and skips the slot following these Q� 1empty slots (beause it believes that this slot neessarily ontains a ollision). Notie, ifthe basi algorithm were to be used the next slot would have turned out empty and the\ollision" would have been resolved. As for the modi�ed algorithm, the next Q� 1 slotsare again empty and another slot will be skipped by the modi�ed sheme. As a resultthe algorithm beomes deadloked as it ontinues splitting inde�nitely; that is, none ofthe stations ever sueed in transmitting their paket. In pratie, after some prede�nednumber h times Q � 1 empty slots, where every Q � 1 slots are followed by a split, thealgorithm should allow the next subset to transmit without �rst splitting it. The valueof h depends upon the reliability of the medium.The stability harateristis of the modi�ed algorithm under Poisson traÆ were alsorevealed by Mathys and Flajolet [43℄. The orresponding equation for the bloked aesssheme (with fair oins) for lN=N islN=N = Q(1� f1(N))� [Q�1 + (1�Q�1) ln(1�Q�1)� f2(N)℄lnQ +O(N�1); (1.3)were f1(N) and f2(N) are utuating funtions of small amplitude, between 10�3 and10�6. Numerial values for Q = 2 to 10 are found in Table 1.1. This table also representsthe results for the free aess sheme. Fair oins are, for both the bloked aess andfree aess strategy, no longer the optimal oins. It turns out that inreasing the prob-ability pQ, while keeping the others equal to eah other, slightly improves the maximumahievable throughput. For instane, the modi�ed ternary tree algorithm with free aesssupports input rates up to :407614 for p1 = p2 = :314544 and p3 = :370911. The modi�edbinary tree algorithm with bloked aess ahieves a stability of :381260 for p1 = :4174and p2 = :5826.1.4.3 Estimating the Multipliity of Conits to Speed TheirResolutionThe highest stability result under Poisson traÆ we enountered, so far, when exploitingbinary, resp. ternary, feedbak is :401599, resp. :407614. Higher stability results, up to:487 for ternary feedbak, have been ahieved in a variety of ways. The �rst, disussedin this setion, an be used in ombination with a bloked aess strategy and existsin estimating the number of partiipants at the start of the ollision resolution interval(CRI). If the estimated multipliity is equal to m, all stations taking part in the CRI splitinto m groups at the start of the CRI. Next, eah of the m groups is resolved using aollision resolution algorithm (in our ase a tree algorithm). This idea was �rst introduedby Capetanakis in his dynami tree protool, under the assumption that the multipliityof the onit was a Poisson distributed random variable [3, 22℄. Several proedures have



1.4. TREE ALGORITHMS 13a basi binary tree modi�ed binary tree modi�ed biased binary tree2 .4025 .4341 .44021.1 .4202 .4526 .45891.01 .4256 .4581 .46441.001 .4275 .4602 .46651.0001 .4282 .4609 .4672Table 1.2: Maximum ahievable throughput for the basi, modi�ed and the biased modi�ed(p1 = :4174) binary tree algorithm when ombined with the base a estimation methodbeen proposed for estimating the onit multipliity. A summary of those whose auraydoes not depend on the stohasti assumptions about the arrival proess is presented inthis setion.Greenberg, et al [22℄ proposed the following estimation method known as the base aestimation algorithm. The base a estimation algorithm searhes for a power of a that islose to n, the onit multipliity. The following probabilisti test of the hypothesis thatn � ai is used. Let eah of the n oniting stations transmit in a slot with probability a�i.A ollision supports the hypothesis that n � ai. This test is exeuted with i = 1; 2; 3; : : :until no ollision ours. If this proedure leads to a series of j ollisions, n is estimatedas aj. The estimation therefore requires 1 + loga n� = O(loga n) time slots, where n� isthe estimate for n [22℄. The loser we hoose a to one, the better the estimate turns outto be.Greenberg, et al [22℄ determined the asymptoti behavior of the expeted time lN requiredto resolve a CRI with N partiipants when the basi binary tree algorithm, the modi�edbinary tree algorithm and the modi�ed biased binary tree algorithm (p1 = :4174) is used asthe ontention resolution algorithm. Combining this with the Poisson property for blokedaess shemes provides us with the maximum ahievable throughput. Numerial resultsare presented in Table 1.2. The results indiate that stability up to :4282, resp. :4672,an be ahieved by exploiting binary, resp. ternary, feedbak.Cidon and Sidi [8℄ further experimented with the estimation ideas of Greenberg et al [22℄.They proposed the following estimation proedure. Suppose that there are n ontendersin the CRI. Eah of the n stations transmits in the �rst slot of the CRI with a probabilityp > 0. Thus, the n stations are split into two sets E and D, where E onsists of thosestations that transmitted and D of the others. If this �rst slot holds a ollision|thatis, jEj � 2|then the stations in E use the modi�ed binary CTM or tree algorithm toresolve the ollision. When the set E is resolved we know the number of partiipants jEjin E. The estimate for n, denoted as n�, is omputed as jEj=p and the estimate for jDjis n� � jEj. Next, m is de�ned as maxf1; d�(n� � jEj) � �eg. The parameter � has noe�et on the stability of the algorithm, whereas � is used to optimize the stability. Next,the stations belonging to the set D are split into m sets and eah set is resolved using themodi�ed binary CTM algorithm. Cidon and Sidi [8℄ have shown that the lim inf n=T (n)of this onit resolution algorithm is equal to :468 for � = :786 and p < 10�5. Usingthis idea they onstruted a more omplex variation on this onit resolution algorithm



14 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONand found one for whih lim inf n=T (n) = :487|that is, a CRA that resolves onits ofmultipliity n, for n large, in expeted time of approximately 2:054n time slots.1.4.4 Grouping on Arrival TimesAnother natural way to devise a random aess algorithm that ahieves a high stablethroughput is to \deouple" transmission times from arrival times5. This was �rst sug-gested by Gallager [3℄ and his Russian ounterpart Federov [41℄. A desription by Massey[41℄ is given below. Suppose that the random aess sheme is ativated at time t = 0.The unit of time is de�ned as the length of a slot, so that the i-th transmission slot is thetime interval (i; i+ 1℄. A seond time inrement � is hosen and the i-th arrival epoh isde�ned as the time interval (i�; i�+�℄ (� is not neessarily an integer value). The �rsttransmission rule used by this algorithm is as follows: transmit a new paket that arrivedduring the i-th arrival epoh in the �rst \utilizable" slot following the ollision resolutioninterval (CRI) for new pakets that arrived during the (i� 1)-th arrival epoh. The mod-i�er \utilizable" reets the fat that the CRI for new pakets that arrived during the(i�1)-th arrival epoh might end before the i-th arrival epoh has ended. If so, a numberof transmission slots are skipped until the i-th arrival epoh ends. One ould improve thealgorithm by shortening the i-th arrival epoh. This both ompliates the analysis andthe implementation and has no inuene on the maximum stable throughput.Eah of the groups is resolved using either the basi binary or the modi�ed binary treealgorithm, depending on whether we have binary or ternary feedbak (the order in whihthey are resolved is of no importane). Conit resolution algorithms that use a highersplitting fator (Q > 2) are not onsidered for resolving the groups. The reason is thefollowing. When grouping arrivals based on the arrival epohs, it is important to havea ollision resolution algorithm that performs well for groups with very few ontenders(beause these appear the most frequent if � is small). The basi Q-ary tree algorithmperforms best in resolving groups with n � 3 partiipants for Q = 2. The same anbe said about the modi�ed algorithm for n � 7. This auses higher splitting fators toahieve worse stability results (if � is small).Massey [41℄ has proven that the maximum stable throughput ahieved by this algorithmunder Poisson input is :4294, resp. :4622, when exploiting binary, resp. ternary, feedbakby setting � equal to 2:6712, resp. 2:7066. Notie, the expeted number of arrivalsin an arrival epoh is 1:147, resp. 1:251. Gallager [3℄ further improved this algorithmby making the result of the oin ip depend upon the arrival times. Thus, paketsgenerated during the �rst half of the interval, whih is being resolved, are onsidered asipping \0", the others as ipping \1". An important onsequene is that the resultingalgorithm is a �rst-ome-�rst-served (FCFS) algorithm, namely, the order in whih thestations are suessful is idential to the order of arrival. Gallager also indiated a seondimprovement that inreases the maximum ahievable throughput and greatly simpli�esthe analysis. Consider what happens when a ollision is followed by another ollision in5The idea of grouping has been reintrodued more reently in wireless loal area networks (LANs)with delayed feedbak [9, 10℄



1.5. UPPER BOUNDS 15the tree algorithm. Let n be the number of stations involved in the �rst ollision andassume that n1 of the n stations selet the �rst group; thus, n2 = n�n1 selet the seond.Let n11, resp. n12, be the number of stations that selet the �rst, resp. seond, group afterthe seond ollision. The seond ollision indiates that n1 � 2. Due to the �rst ollisionwe have n = n1 + n2 � 2, therefore we know nothing about n2 (for Poisson arrivals).Gallager therefore suggested to add the n2 stations to the group of the n12 stations. Theanalysis of this algorithm is muh easier ompared to other tree algorithms beause thestatus of all baklogged stations (those who do not belong to the set that is urrentlybeing resolved) is idential. Gallager proved that this algorithm, referred to as the FCFSsplitting algorithm, supports rates up to :4871 (when exploiting ternary feedbak). Moselyand Humblet [28℄ further re�ned the algorithm for rates up to :48776.1.4.5 The Deterministi Tree AlgorithmCapetanakis, Hayes, and Tsybakov and Mikhailov [22℄ independently proposed a de-terministi tree algorithm. A deterministi tree algorithm is used as a random aessalgorithm in an environment with a �nite set of K stations. Eah of these K stations isidenti�ed by a unique number, written as a Q-ary number and referred to as the MACaddress of the station (K is hosen as a power of Q). It di�ers from the basi Q-arytree algorithm with bloked aess in the sense that stations are no longer split into Qsets using a probabilisti method, but use their MAC address in a deterministi fash-ion. A station selets the i-th group after the j-th ollision in a CRI if the j-th digitof its MAC address equals i. As a result the maximum length of a CRI is redued to(QK � 1)=(Q � 1), orresponding to a full Q-ary tree of height k, where K = Qk, thatdevelops when all K stations are ative. The maximum delay for a message is thereforebounded by 2(QK � 1)=(Q� 1) < 4K.The onditions under whih the stability analysis of an algorithm operating in a �nitepopulation ofK stations is done, are very di�erent from those operating in an in�nite pop-ulation. For a �nite population one assumes that eah station generates traÆ aordingto a Poisson proess with rate �=K, resulting in a global rate � [17℄. A station attemptsto transmit one paket at a time, while the other pakets are bu�ered until a suessfultransmission takes plae. The algorithm is said to be stable if the expeted delay of apaket is �nite. Obviously, stability is maintained for all rates � < (Q� 1)K=(QK � 1).(Q� 1)K=(QK � 1) dereases as K inreases and reahes a limit of (Q� 1)=Q for K toin�nity.1.5 Upper Bounds on the Maximum AhievableThroughputThis setion is based on [38, 41, 42℄. Muh work has gone into determining upper boundson the maximum ahievable throughput that an be supported by a full-sensing algorithmunder Poisson input traÆ. In a full-sensing algorithm, all users reeive feedbak infor-



16 CHAPTER 1. RANDOM ACCESS ALGORITHMS: INTRODUCTIONmation at the end of eah slot (as opposed to the aknowledgement-based algorithms).Pipperger was the �rst to improve the obvious upper bounds6 using information-theoretiarguments. He showed that all algorithms are unstable for � > :744. Humblet improvedthis bound in 1979 to :704. The next improvement was made by Molle in 1980: all algo-rithms are unstable for � > :6731. Kelly (1985) introdued a new boundary for algorithmsthat allow new arrivals to transmit immediately. The argument went as follows. Supposethat an algorithm is operating stable under Poisson arrivals. De�ne pr as the fration ofthe slots in whih retransmissions take plae. Then, beause the number of new sendersin any slot is independent of the number of retransmitted pakets in that slot, it followsthat the fration of slots with exatly one paket (i.e., the throughput �) satis�es� � �e��(1� pr) + pre�� (1.4)with equality when at most 1 paket is retransmitted in a slot. The stability implies � = �.It is readily7 seen that setting pr = 1 maximizes � for whih the equation an be satis�ed;thus, � � e��. The largest � that satis�es this equation is � = :5671. Notie, even ifthe stations were to ommuniate among eah other in order to implement a ollision freeretransmission sheme, but do not exhange information about the new arrivals whihare transmitted immediately, one annot ahieve a throughput above :5671. Tsybakovand Mikhailov (1987) used similar but more intriate arguments to prove that all randomaess algorithms are unstable for � > :5683. The best algorithms known ahieve athroughput of :4492, resp. :4877, when binary, resp. ternary, feedbak is exploited.In 1979 Mosely gave some onvining arguments (but no proof) that random aessshemes for whih the order of the suessful transmissions is idential to the order ofthe arrivals, i.e., FCFS algorithms, annot ahieve a throughput above :48785. Reently,in 1998, Loher has proven that FCFS algorithms are always unstable for � > :4906. TheFCFS splitting algorithms of Gallager and Mosely are stable for rates up to :4871 and:4877.

6It is easy to show that random aess algorithms that allow new arrivals to transmit immediately areunstable under Poisson traÆ for �=(1 + �) < e��, i.e., � > :802.7Equation (1.4) an be rewritten as g(�) = (e� � 1)�=(1 � �) � pr, with g(0) = 0; g(�) � 0 for0 � � < 1 and g0(�) > 0 for 0 � � < 1. As a result one maximizes the solution by setting pr = 1.



Chapter 2D-BMAPs and Random AessAlgorithms with Bloked Aess
The objetive of this hapter is threefold. First, we desribe a lass of arrival proessesommonly known as disrete time bath Markovian arrival proesses (D-BMAPs), disusssome of its properties and present some examples. Seond, we motivate why it is usefulto study the stability of random aess shemes under D-BMAP input traÆ. Finally, weprove that the Poisson results presented in Chapter 1 for the random aess algorithmswith bloked aess are also valid for most D-BMAPs. Bloked aess is one of the hannelaess protools (CAPs) presented in Chapter 1. The other two, namely, free aess andgrouping, are disussed in Chapters 3{5. That is, the stability of tree algorithms with freeaess under D-BMAP input traÆ is addressed in Chapter 3 and 4; while tree algorithmsthat make use of grouping (see Setion 1.4.4) are disussed in Chapter 5.2.1 D-BMAPs: De�nition, Properties and ExamplesThe D-BMAP is the disrete time ounterpart of the BMAP [39, 40℄ and was �rst intro-dued in [4℄. D-BMAPs form a lass of tratable Markovian arrival proesses, whih, ingeneral, are non-renewal and whih inlude the disrete time variants of the Markov mod-ulated Poisson proess, the PH-renewal proess and superpositions of suh proesses aspartiular ases. Beause of its versatility, it lends itself very well to modeling bursty ar-rival proesses ommonly arising in omputer and ommuniations appliations [5, 47, 48℄.2.1.1 A De�nitionA de�nition by Dani�els [11℄ is given below. Formally, a D-BMAP is de�ned by an in�niteset of positive l � l matries (Bn)0�n<1, with the property thatB = 1Xn=0Bn (2.1)



18 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSis a transition matrix. A D-BMAP is denoted by (Bn)n, whih ompletely determines it.By de�nition the Markov hain J t assoiated with B and having fi; 1 � i � lg as its statespae, is ontrolling the atual arrival proess as follows. Suppose J is in state i at time t.By going to the next time instane t+ 1, there ours a transition to another or possiblythe same state, and a bath arrival may or may not our. The entries (Bn)i;j representthe probability of having a transition from state i to j and a bath arrival of size n. So, atransition from state i to j without an arrival will our with probability (B0)i;j. De�neby Xt the number of arrivals generated at time t.D-BMAPs are generally de�ned with l, the size of the square matries Bn, �nite. It ispossible to extend their theory for l in�nite [11℄. However, the D-BMAPs studied inthis thesis are assumed to have a �nite number of states. Some of the properties weprove with respet to random aess shemes, make expliit use of the �niteness of l. Wealso assume that the transition matrix B is an aperiodi irreduible matrix. Aperiodiirreduible matries are often referred to as primitive matries [58℄. Thus, whenever werefer to a primitive D-BMAP we mean to say that its transition matrix B is aperiodi andirreduible. For B primitive the Markov hain Jt has a unique stationary distribution.Let � be the stationary probability vetor of the Markov hain Jt, i.e., �B = � and �e = 1with e a olumn vetor of 1's. The mean arrival rate � = E[Xt℄ of the D-BMAP (Bn)n isgiven by� = � 1Xn=1 nBn! e: (2.2)Due to the Ergodi Theorem for primitive Markov Chains [58℄ we havelimL!1 E[PL�1i=0 Xt+i j Jt = j℄L = �; (2.3)for 1 � j � l. D-BMAPs for whih Bn = 0, for n � 2, are referred to as disrete timeMarkovian arrival proesses (D-MAPs).2.1.2 Some PropertiesThe following properties have been shown to hold for an arbitrary D-BMAP (Bn)n. Ad-ditional properties and disussions an be found in [4{6℄. First, a superposition of twoD-BMAPs (B1n)n and (B2n)n is again a D-BMAP (Bn)n. The Bn matries of the newlyreated D-BMAP are alulated as a sum of Kronker produts between the B1n and B2nmatries, see [4, 11℄. Seond, the autoorrelation funtion r(k) = Cov(X1; Xk)=Var(X1)is found as [4℄r(k) = � [P1n=1 nBn℄Bk�2 [P1n=1 nBn℄ e� �2� [P1n=1 n2Bn℄ e� �2 : (2.4)The index of dispersion for ounts (IDC), a measure for the burstiness of an arrival proess,at time k, is de�ned asI(k) = Var(Pkj=1Xj)E[Pkj=1Xj℄ = kCov(X1; X1) + 2Pk�1j=1(k � j)Cov(X1; Xj+1)�k : (2.5)



2.1. D-BMAPS: DEFINITION, PROPERTIES AND EXAMPLES 19Another measure that is often used for the burstiness is the index of dispersion for intervals(IDI). The IDI is the sequene 2k de�ned as2k = kV ar[Pkj=1 Sj℄E[Pkj=1 Sj℄2 ; (2.6)where Sj represents the j-th interarrival time. For a renewal proess [61℄ we have 2k = 21,where 21 is the squared oeÆient of variation, i.e., the variation divided by the squareof the mean, of the number of arrivals in a slot. In partiular, for the Poisson proessI(k) = 2k = 1.2.1.3 Some ExamplesThe Disrete Time Poisson ProessThe disrete time Poisson proess is obtained by observing the ontinuous time Poissonproess at the slot boundaries. Arrivals that ourred in the interval (t; t + 1℄ are nowassumed to arrive on the boundary of slot t and t+1, i.e., at time t+1. We an model thedisrete time Poisson proess as a D-BMAP with a single state by letting Bn = e���n=n!,for n � 0. The autoorrelation funtion r(k) = 0, while the index of dispersion for ounts(IDC) I(k) = 1. Whether we use the ontinuous time or disrete time variant of thePoisson proess makes no di�erene to the stability of a time slotted algorithm. Themean delay is slightly di�erent (at most 1). For later referene, we abbreviate the Poissonproess as PP(�).The Disrete Time Erlang ProessWe de�ne the ontinuous time Erlang proess as follows. The ontinuous time Erlangproess has independent and identially distributed interarrival times that obey an Erlangdistribution [23℄ with parameters k and �e (this �e is not to be onfused with the arrivalrate � of the orresponding D-BMAP). Clearly, for k = 1 the Erlang proess is reduedto the Poisson proess. By observing the Erlang proess at the slot boundaries we obtainthe disrete time Erlang proess (arrivals are assumed to our on slot boundaries). Thedisrete time Erlang proess an be modeled as a D-BMAP in the following way. Letn = e���n=n!; n � 0, and let Bn; n � 0, be k � k matries de�ned as(Bn)i;j = nk+j�i nk � j � i; (2.7)(Bn)i;j = 0 nk < j � i: (2.8)The arrival rate � of this D-BMAP1 is �e=k. For later referene, we abbreviate the Erlangk proess as ER(�e ; k).1The matrix B = PnBn is a irulant matrix [60℄. Therefore, it is possible to determine the eigen-values of B expliitly as a funtion of �e and k. Whih allows us to get an expliit expression for thedeay rate of the autoorrelation funtion [11℄.



20 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSThe Disrete Time Markov Modulated Poisson ProessWe restrit ourselves to the disrete time Markov modulated Poisson proesses with twostates. These proesses are haraterized by two parameters �1; �2 and a 2 � 2 matrixT . The proess will generate arrivals aording to a Poisson proess with a mean rate �iwhen the urrent state is i. Transitions from one state to another an our at the endof eah time slot aording to a 2� 2 transition matrix TT = � 1� 1a 1a1b 1� 1b � : (2.9)The expeted sojourn time in state 1, resp. state 2, is a, resp. b, time slots. The matriesBn are found asBn =  �n1 e��1n! (1� 1a) �n1 e��1n! 1a�n2 e��2n! 1b �n2 e��2n! (1� 1b )! : (2.10)Notie, PnBn = B = T . The arrival rate � is alulated as (�1a + �2b)=(a + b). Bymeans of the spetral deomposition [11℄ of T and Equation (2.4) it is not too diÆult to�nd the autoorrelation funtion r(k)r(k) = (1� 1a � 1b )k�1(�1 � �2)2�1ab + �2ba + �1 + �2 + (�1 � �2)2 : (2.11)For later referene, we abbreviate the Markov Modulated Poisson proess with parameters�1; �2; a and b as M (�1 ; �2 ; a; b).The Bulk Arrival ProessThe Bulk arrival proess is de�ned as a disrete time arrival proess haraterized by a1�m vetor v and a length L. The arrival pattern of this proess onsists of a repetitionof idential yles. The �rst part of eah yle onsists of a set of bathes, haraterizedby v. For instane v = [2; 3; 2℄ means that we �rst have a bath of size 2, in the nexttime slot we have a bath of size 3, followed by a bath of size 2. The seond part of theyle is a silent period with a geometrially distributed length with average L. The Bulkarrival proess an be desribed by the following D-BMAP. Let v = [v1; : : : ; vm℄ and letBn; n � 0; be a set of (m+ 1)� (m+ 1) matries with(Bvj )j;j+1 = 1 (1 � j � m); (2.12)(B0)m+1;1 = 1=L; (2.13)(B0)m+1;m+1 = 1� 1=L: (2.14)The other omponents of the matries Bn are equal to zero. The arrival rate � of aBulk arrival proess equals Pj vj=(L + m). For m = 1 one easily obtains that theautoorrelation funtion r(k) obeys the following equation:r(k) = �(�1)kL�(k�2)L� 2 : (2.15)For later referene, we abbreviate the Bulk arrival proess with parameters v and L asB(v ;L).



2.2. D-BMAPS AS ACCESS NETWORK INPUT TRAFFIC 212.2 D-BMAPs as Aess Network Input TraÆIt has been pointed out in literature [8, 22, 42℄ that the stability of a random aess algo-rithm under a more general lass of arrival proesses|also referred to as the robustnessof an algorithm [8, 42℄ or, equivalently, the insensitivity to the statistis of the arrivalproess|is an attrative pratial feature. The reason is obvious: in pratie, an aessnetwork, e.g., a loal area network (LAN), operates with a �nite number of users andtraÆ generated on suh a network tends to be more bursty and orrelated omparedto Poisson arrivals. The lass of D-BMAPs allows us to inorporate burstiness and or-relation and is therefore, to some extent, better suited to math aess network inputtraÆ. As with the Poisson arrivals we assume that the D-BMAP traÆ is generated byan in�nite number of users, this provides us with an upper bound to the delay.The fat that we limit ourselves to disrete time arrival proesses is of no importane.The stability under a ontinuous time bath Markovian arrival proess an be studiedby reating a disrete time variant with the same stability properties. The disrete timevariant is found by observing the ontinuous time proess at the slot boundaries and byassuming that the arrivals that ourred in the interval (t; t + 1℄ atually our at timet + 1, i.e., on the boundary of time slot t and t + 1 (e.g., the disrete time Poisson andErlang proesses desribed in Setion 2.1.3). Notie, the time interval (t; t+1℄ is referredto as slot t. Suppose that the D-BMAP (Bn)n is used as input traÆ and assume thatthe D-BMAP is in some state i; 1 � i � l, at time t. Then, with a probability (Bn)i;j, thestate at time t+1 is j and n new pakets are generated at the boundary of slot t�1 and t.In a random aess algorithm with free aess these n new pakets are transmitted|forthe �rst time|in time slot t by their orresponding stations. In a bloked aess shemeeah of these n stations defers the �rst transmission attempt until the urrent ollisionresolution interval (CRI) has �nished. Whereas in a grouping algorithm, they postponethe transmission attempt until all prior groups have been resolved (unless the groups arenot resolved in a FCFS order).2.3 D-BMAPs and Bloked Aess AlgorithmsReall from Chapter 1, that if the input traÆ is Poisson with a mean � and if a onitresolution algorithm (CRA) has an expeted running time T (n), to resolve n partiipants,then the orresponding random aess algorithm with bloked aess is stable for all� < lim inf n=T (n); unstable for � > lim supn=T (n). The expression for T (n) dependsupon the CRA. Therefore, it is suÆient to study the asymptoti behaviour of n=T (n) forn to in�nity in order to determine the stability of a bloked aess sheme under Poissoninput. This behaviour is, obviously, independent of the arrival proess. Thus, in orderto generalize the stability results of any bloked aess sheme, presented in Chapter 1,it suÆes to generalize the above-mentioned Poisson property to the arrival proess ofinterest.Comments that this property an be generalized to other arrival proesses are often foundin literature [14, 22, 42, 43℄. For instane, Massey [42℄ states that \This stability holds not



22 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSonly for the assumed Poisson arrival proess, but for virtually any arrival proess thatan be haraterized by an average arrival rate �." Massey [41℄ proves the property forPoisson arrivals and gives an intuitive argument for other arrival proesses. Cidon andSidi [8, Theorem 8℄ have proven the following theorem. Let � = lim inf n=T (n) and letNt;t+L be the number of pakets arriving to the system in the interval (t; t + L℄. Then,the system is stable if there exists a Æ > 0 and an L� suh that E[Nt;t+L℄ < (� � Æ)L forall t and L > L�. For instane, assuming Poisson arrivals, E[Nt;t+L℄ is nothing but �L forall t . Hene, by setting L� = 1, it suÆes to �nd a Æ > 0 suh that � < (� � Æ), where� = lim inf n=T (n). In onlusion, we have stability if � < lim inf n=T (n).From Setion 2.1.1 we know that the expeted number of arrivals of a primitive D-BMAPthat our in an interval of length L approahes �L as L approahes in�nity, where � isthe mean arrival rate (whihever the state at the start of the interval is). Provided thatthe number of states of the D-BMAP l is �nite, we �nd that for any � > 0 there exists anL� suh that E[Nt;t+L℄ < (�+ �)L for all t and L > L�. Thus, when �+ � < �, it suÆesto hoose Æ equal to (� � �) � � > 0 to ful�ll the required equation (� is hosen to besmaller than � � �). Hene, we have the following theorem:Theorem 2.1 A random aess algorithm with bloked aess, orresponding to a onitresolution algorithm (CRA) that resolves onits of multipliity n in expeted time T (n),is stable under primitive D-BMAP (Bn)n input traÆ if1. � < lim inf n=T (n), with � the mean arrival rate,2. (Bn)n has a �nite number of states l.The aperiodiity of the D-BMAP (Bn)n is not really a requirement, i.e., the theorem is alsovalid under irreduible D-BMAP traÆ. We did not �nd a proof in the literature showingthat the system beomes unstable for � > lim supn=T (n) (exept for Poisson arrivals).Therefore, we now prove the following theorem. The proof method is a generalization ofMassey's proof for the Poisson arrivals [41℄.Theorem 2.2 A random aess algorithm with bloked aess, whih orresponds to aollision resolution algorithm (CRA) that solves ollisions of multipliity n in an expetedtime T (n), is unstable under primitive D-BMAP traÆ if1. � > lim supn=T (n), with � the mean arrival rate,2. (Bn)n has a �nite number of states l,3. (Bn)n is not a D-MAP, that is there exists a n > 1 suh that Bn 6= 0.We start with the following de�nitions. Let (Bn)n be a primitive D-BMAP with a �nitenumber of states, i.e., with l �nite. Let Yi and Xi denote the length and the number ofpartiipants of the i-th ollision resolution interval (CRI), where X0 and Y0 orrespond



2.3. D-BMAPS AND BLOCKED ACCESS ALGORITHMS 23to the CRI beginning at time t = 0. Let Zi denote the state of the D-BMAP at the startof the i-th CRI, where Z0 is the state at time t = 0. Let T (n) be the expeted timerequired by the onit resolution algorithm (CRA) to resolve a set of n ontenders, i.e.,T (n) = E[Yi j Xi = n℄. Using the law of total probability, we haveE[Yi℄ = 1Xn=0 P [Xi = n℄E[Yi j Xi = n℄: (2.16)Let � = lim supn=T (n), then for any �1 > 0 there exists anN(�1) suh that n=T (n) � �+�1for n > N(�1). In other words, T (n) � n=(� + �1) for n > N(�1). Therefore, we an writeEquation (2.16) asE[Yi℄ � 1� + �1 Xn>N(�1)nP [Xi = n℄ + Xn�N(�1)E[Yi j Xi = n℄P [Xi = n℄: (2.17)Let T (n) = n=(� + �1) + g(n), where g(n) is a orretion that an be either positive ornegative. Therefore,E[Yi℄ � 1� + �1E[Xi℄ + Xn�N(�1) g(n)P [Xi = n℄: (2.18)Whenever g(n) � 0 we use 0 as a lower bound for g(n)P [Xi = n℄; otherwise, we use g(n)as an lower bound for g(n)P [Xi = n℄. Hene,E[Yi℄ � 1� + �1E[Xi℄ + e(�1); (2.19)where �1 > 0, e(�1) � 0 is a �xed number2 that does not depend upon i and � =lim supn=T (n). We know from Setion 2.1.1 that for any primitive D-BMAP the expetednumber of arrivals in an interval of length L approahes �L as L approahes in�nity, where� is the arrival rate of the D-BMAP (independent of the state at the start of the interval).Thus, beause the number of states of the D-BMAP (Bn)n is �nite, we have that for any�2 > 0 there exists a K(�2) suh that E[Xi+1 j Yi = L℄ � (�� �2)L for L > K(�2). Hene,by means of the law of total probabilityE[Xi+1℄ � (�� �2) XL>K(�2)LP [Yi = L℄ + XL�K(�2)P [Yi = L℄E[Xi+1 j Yi = L℄: (2.20)Reall Zi is the state of the D-BMAP at the start of the i-th CRI. Obviously,E[Xi+1 j Yi = L℄ � minj E[Xi+1 j Yi = L \ Zi = j℄: (2.21)The expression minj E[Xi+1 j Yi = L \ Zi = j℄ is nothing but the expeted number ofarrivals generated by the input D-BMAP during an interval of length L, provided thatthe state at the start of the interval is j. Hene, we an write it as (� � �2)L + h(L),where h(L) is a orretion that is either positive or negative, to obtainE[Xi+1℄ � (�� �2)E[Yi℄ + XL�K(�2) h(L)P [Yi = L℄: (2.22)2The value e(�1) also depends on the CRA being used and not solely on �1.



24 CHAPTER 2. D-BMAPS AND BLOCKED ACCESSFor h(L) negative, resp. positive, we replae h(L)P [Yi = L℄ by h(L), resp. 0, to �nd thatE[Xi+1℄ � (�� �2)E[Yi℄ + f(�2); (2.23)where f(�2) � 0 is a �xed number3 that does not depend upon i. Combining Equations(2.19) and (2.23) provides us with the following equation:E[Xi+1℄ � �� �2� + �1E[Xi℄ + (�� �2)e(�1) + f(�2); (2.24)for i � 0. When the equality is taken in Equation (2.24), we have a �rst-order linearreursion whose solution for the initial ondition X0 = N and Z0 = j is a lower bound onE[Xi℄. This lower bound an be rearranged to the following form:E[Xi℄ �  N � [(�� �2)e(�1) + f(�2)℄1� ���2�+�1 !��� �2� + �1�i + [(�� �2)e(�1) + f(�2)℄1� ���2�+�1 ; (2.25)with e(�1) � 0 and f(�2) � 0. De�ne [(���2)e(�1)+f(�2)℄1�(���2)=(�+�1) as IN 4. For (� � �2) > (� + �1) we�nd IN � 0 (�2 is hosen suh that � > �2). Thus, for (�� �2) > (� + �1) the lower boundfor E[Xi℄ presented in Equation (2.25) grows without a bound as i goes to in�nity if N islarge enough|that is, larger than IN . For N smaller than IN the lower bound for E[Xi℄dereases to minus in�nity and we know nothing from Equation (2.25).Notie, Equation (2.25) atually states that if a CRI with more than IN partiipantsours, E[Xi℄ grows without bound|that is, the algorithm is unstable under D-BMAP(Bn)n traÆ|for � > � . Next, we prove that a CRI with more than IN ontenders ourswith probability one if (Bn)n is not a D-MAP. Consider the Markov hain (Xi; Zi) on thestate spae f(n; j) j n � 0; 1 � j � lg. From this Markov hain, we onstrut a �nitestate Markov hain Wi with an absorbing state w by replaing the states f(n; j) j n >IN ; 1 � j � lg by a single absorbing state w. The state spae of Wi is 
 = 
1 [ 
2 [ 
3,with 
1 = f(n; j) j n = 0 or 1; 1 � j � lg, 
2 = f(n; j) j 2 � n � IN ; 1 � j � lg and
3 = fwg. Hene, 
 onsists of (IN + 1)l + 1 states. Denote the transition matrix P ofWi asP = 0� A B aC D b0 0 1 1A ; (2.26)where the 2l � 2l matrix A, resp. 2l � (IN � 1)l matrix B, represents the transitionprobabilities from the states in 
1 to those in 
1, resp. 
2. Whereas, the (IN � 1)l � 2lmatrix C, resp. (IN�1)l�(IN�1)l matrix D, represents the transition probabilities fromthe states in 
2 to those in 
1, resp. 
2. Finally, let the vetors a, resp. b, represent the3Obviously, f(�2) also depends on the D-BMAP (Bn)n being used as the input proess and on theonit resolution algorithm (CRA) being used beause K(�2) depends on �2 and the CRA.4Notie, the value of IN depends upon �1, �2, the ollision resolution algorithm (CRA) that is used(beause t, e(�1) and f(�2) depend on the CRA) and the D-BMAP (beause � and f(�2) depend on theD-BMAP).



2.3. D-BMAPS AND BLOCKED ACCESS ALGORITHMS 25probabilities that a transition is made from the states in 
1, resp. 
2, to the absorbingstate w. Moreover, denote the k-th power of P asP k = 0� A(k) B(k) a(k)C(k) D(k) b(k)0 0 1 1A : (2.27)The states in 
1[
2 are transient [31℄ if for some k0 > 0: a(k) > 0 and b(k) > 0 for k > k0.In whih ase a transition to the absorbing state eventually ours with probability one.That is, a CRI with more than IN ontenders ours with probability one.First, we have b > 0; hene, b(k) > 0 for any k > 0. Indeed, if a CRI has n � 2 ontenders,then for eah t > 0 there exists a non zero probability pn;t that the CRA needs t or moretime slots to resolve the ontention between n partiipants (beause the CRA works withan in�nite population). Also, for t large enough, there exists a non zero probability thatmore than IN arrivals our in an interval of length t (whatever the state at the start ofthe interval). As a result, there exists a non zero probability that a CRI with two or moreontenders is followed by a CRI with more than IN ontenders. Seond, in order to showthat there exists a k0 > 0 suh that a(k) > 0 for k > k0, it suÆes to show that eah ofthe 2l rows of the 2l � (IN � 1)l + 1 matrix [B(k)a(k)℄ with k � k0 has at least one entrythat defers from zero (beause b > 0). Suppose that the Markov hain (Xi; Zi) is in state(n1; j1) 2 
1. The input D-BMAP (Bn)n is not a D-MAP; hene, there exists an i�; j�and m > 1 suh that (Bm)i�;j� 6= 0. Moreover, due to the irreduibility of B =PnBn weknow that for some k(n1;j1) > 0 there exists a non zero probability that the Markov hain(Xi; Zi) makes a k(n1;j1)-step transition from state (n1; j1) to a state of the form (n2; i�)|that is, a state of the form (n2; i�) is reahed after k(n1;j1) transitions with a non zeroprobability. From the state (n2; i�) there is a non zero probability (beause (Bm)i�;j� 6= 0)that the Markov hain (Xi; Zi) makes a transition to a state of the form (n3; j2) withn3 � m > 1. Hene, from the state (n1; j1) there is a non zero probability that a state ofthe form (n3; j2) is reahed in k(n1;j1) + 1 steps, with n3 � m > 1. Thus, if the Markovhain Wi is in the state (n1; j1) 2 
1, there exists a nonzero probability that Wi reahesa state in 
2 \
3 after k(n1;j1)+1 steps. Therefore, hoosing k0 = max(n1;j1)2
1 k(n1;j1)+1ompletes the proof.In onlusion, the algorithm orresponding to the onit resolution algorithm that solvesonits of multipliity n in an expeted time T (n), is unstable under the D-BMAP (Bn)nif � > lim supn=T (n) and if (Bn)n does not belong to the lass of D-MAPs. As far asthe D-MAPs are onerned, Equation (2.25) also states that the algorithm is unstablefor D-MAPs with � > lim supn=T (n) if the number of partiipants in the �rst CRI issuÆiently large. This may seem somewhat ounter intuitive. For instane, for eah CRIthere exists a non zero probability that no new arrivals our during the CRI (exept for� > 1 and some periodi D-MAPs). If this happens we obviously get stability beauseall subsequent CRIs have either zero or one partiipants. Notie, Equation (2.25) statesthat suh an event does not happen with a probability one. In onlusion, startingwith a CRI with more than IN partiipants, with D-MAP input traÆ with an arrivalrate � > lim supn=T (n), results in an unstable algorithm beause the expeted delay isin�nite. Often there is however a non zero probability that stability is obtained along theway (this probability should be equal to one in order to obtain a �nite expeted delay).



26 CHAPTER 2. D-BMAPS AND BLOCKED ACCESS2.4 ConlusionIn this hapter we introdued the lass of D-BMAP arrival proesses and motivated whyit is useful to study the stability of a random aess algorithm under D-BMAP inputtraÆ. We also demonstrated that it is fairly easy to prove that the stability/unstabilityof a bloked aess algorithm under primitive D-BMAP traÆ (with a �nite number ofstates and not belonging to the lass of D-MAPs) is idential to the stability/unstabilityunder Poisson traÆ. This is a very positive harateristi of a bloked aess sheme.Obviously, this does not imply that the delay is in the same order of magnitude for di�erentarrival proesses. The objetive of Part I of this thesis is to study the stability of most ofthe tree algorithms presented in Setion 1.4, with the exeption of some of the groupingalgorithms of Setion 1.4.4, under D-BMAP input traÆ. Having dealt with the blokedaess shemes, the basi and modi�ed Q-ary CTM algorithms with free aess and anumber of grouping algorithms remain to be studied. Indeed, the estimation algorithmspresented in Setion 1.4.3 are also of the bloked aess type. In the next hapter weintrodue a method to study the stability of the basi binary CTM algorithm with freeaess under D-BMAP input traÆ. In Chapter 4 we generalize this method to the basiand modi�ed Q-ary CTM algorithm with free aess; whereas Chapter 5 deals with treealgorithms that make use of a grouping strategy.



Chapter 3Analysis of the Basi Binary CTMAlgorithm with Free Aess
In this hapter we indiate how to determine whether the basi binary CTM algorithmwith free aess is stable under D-BMAP (Bn)n input traÆ. We start with a more detaileddesription of the algorithm to be studied in order to get a good grasp of the problemand how the mathematis relate to the problem. Afterwards, we introdue a lass ofMarkov hains known as Quasi-Birth-Death (QBD) Markov hains with a tree strutureand indiate how to onstrut suh a Markov hain that is reurrent, resp. transient,whenever the basi binary CTM algorithm (with free aess) is stable, resp. unstable. Analgorithm that determines whether this Markov hain is reurrent or not is also provided.Furthermore, using this Markov hain we an alulate the mean delay experiened by apaket and many other performane measures of interest. Numerial results are presentedat the end of the hapter. It is important to notie that to our best knowledge treestrutured Markov hains have never been used in order to study a medium aess ontrolprotool. So far, appliations of tree strutured Markov hains have been limited to thestudy of last ome �rst serve (LCFS) queueing systems with multiple lasses of ustomers,eah lass having a di�erent servie requirement [24{26, 62, 78, 79℄. The work presentedin this hapter was published in [68℄.3.1 The Basi Binary CTM Algorithm with Free A-essFrom Chapter 1 we know that the basi binary CTM algorithm is a ollision resolutionalgorithm (CRA) for whih eah user strives to retransmit its olliding paket till it isorretly reeived. The users have to resolve this ontention without the bene�t of anyadditional information on other users' ativity. The algorithm separates, in a reursiveway, users that ollide into two groups. The separation is done aording to some ran-domization proedure. The users that selet the �rst group attempt a retransmission inthe next slot, while the users that selet the seond group wait until the �rst group is
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Figure 3.1: State Diagram: CO = ollision, NC = no ollisionIn orrespondene with the framework used to study the stability under Poisson input(see Chapter 1), we have an in�nite number of users, i.e., stations, eah holding zero orone pakets. Users that hold a paket (at time t) are referred to as ative users (at timet). The basi binary CTM protool is onveniently implemented by letting eah ativeuser maintain an integer value, referred to as the urrent stak level. The urrent staklevel held by a station an be seen as a representation of the number of \groups" thatneed to be resolved before a station is allowed to (re)transmit. At the end of eah timeslot the urrent stak level is updated aording to the following rules (see Figure 3.1):� A user that beame ative, i.e., generated a new paket, during slot t� 1 initializesits urrent stak level for slot t at zero. A user is allowed to transmit in time slott whenever its urrent stak level for slot t is zero. Therefore, users that beameative during slot t � 1 transmit in slot t (together with other stations that havetheir urrent stak level for slot t at zero).� Suppose that slot t does not hold a ollision, i.e., at most one user has its urrentstak level for slot t at zero. Then, users with a urrent stak level for slot t equal toi; i > 0; set their urrent stak level for slot t+1 at i�1 (while a possibly suessfuluser beomes inative).� If slot t however does hold a ollision, users with a urrent stak level for slot t equalto i; i > 0, set their urrent stak level for slot t + 1 at i + 1. While, users with aurrent stak level for slot t equal to zero split into two groups: a user joins the �rstgroup with a probability p and the seond group with a probability q = 1� p. Allthe users that join the �rst group set their urrent stak level for slot t+ 1 at zero,while the users that join the seond group set their urrent stak level for slot t+ 1at one.An example of the transmission proess is shown in Figure 3.2. Figure 3.2 also inludesa list of group numbers (1 or 2) for eah paket to indiate whih group the paket joinsafter eah ollision (in whih it is involved). Thus, the list 1; 2; : : : for paket E indiatesthat paket E joins the �rst group as a result of its �rst ollision and the seond as aresult of its seond ollision.
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Figure 3.2: Example of the Transmission Proess: CSL = Current Stak Level3.2 Markov Chain of the Quasi-Birth-Death Typewith a Tree StrutureIn this setion we briey desribe a tree strutured Quasi-Birth-Death (QBD) Markovhain. This type of Markov hain was �rst introdued in Takine, et al [62℄ and Yeung,et al [78, 79℄. The theory of tree strutured QBD Markov hains is a generalization ofthe well-known theory of matrix analytial methods introdued by Neuts [47, 48℄. Thegeneralization exists in onsidering the disrete time bivariate Markov hain f(Xt; Nt); t �0g, in whih the values of Xt are represented by nodes of a Q-ary tree, and where Nt takesinteger values between 1 and m. Xt is referred to as the node and Nt as the auxiliaryvariable of the Markov hain at time t. A desription of the transitions of the Markovhain is given below. A Q-ary tree is a tree for whih eah node has Q hildren. The rootnode is denoted as ;. The remaining nodes are denoted as strings of integers, with eahinteger between 1 and Q. For instane, the k-th hild of the root node is represented byk, the l-th hild of the node k is represented by kl, and so on. Throughout this hapterwe use lower ase letters to represent integers and upper ase letters to represent stringsof integers when referring to nodes of the tree. We use '+' to denote onatenation onthe right. For example, if J = 1 0 8; k = 6 then J + k = 1 0 8 6.The Markov hain (Xt; Nt) is alled a Markov hain of the QBD-type with a tree strutureif at eah step the hain an only make transitions to its parent, hildren of its parent(inluding itself), or to its hildren, see Figure 3.3. Moreover, if the hain is in state(J + k; i) at time t then the state at time t+ 1 is determined as follows:1. (J; j) with probability di;jk ; k = 1; : : : ; Q;2. (J + s; j) with probability ai;jk;s; k; s = 1; : : : ; Q,3. (J + ks; j) with probability ui;js ; s = 1; : : : ; Q.
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J
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... J+ks
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Figure 3.3: A tree strutured Markov hain and its transitionsDe�ne m�m matries Dk; Ak;s and Us with respetive (i; j)th elements given by di;jk ; ai;jk;sand ui;js . Notie that transitions from state (J+k; i) do not dependent upon J , moreover,transitions to state (J + ks; j) are also independent of k. When the Markov hain is inthe root state (;; i) at time t then the state at time t+ 1 is determined as follows:1. (;; j) with probability f i;j,2. (k; j) with probability ui;jk ; k = 1; : : : ; Q.De�ne the m �m matrix F with orresponding (i; j)th element given by f i;j. A funda-mental period of a tree strutured QBD Markov hain that starts in the state (J +k; i) isde�ned as the �rst passage time from the state (J + k; i) to one of the m states (J; j) forj = 1; : : : ; m. In general, Q and m are assumed to be �nite. The theory of tree struturedQBD Markov hains an be extended for Q and m in�nite. However, in order to solve theMarkov hain numerially both Q and m need to be �nite. For a more detailed desriptionof the notations and algebra see Yeung, et al [78℄.3.3 Markovian Model for the Basi Binary CTM Al-gorithm with Free AessNew pakets are generated aording to a D-BMAP (see Chapter 2) as follows. Assumethat the D-BMAP is in some state i; 1 � i � l, at time t. Then, with a probability(Bn)i;j, the state at time t+ 1 is j and n � 0 new pakets are generated at the boundaryof slot t � 1 and t. Due to the free aess these n new pakets are transmitted (for the�rst time) in time slot t by their orresponding stations.



3.3. MARKOVIAN MODEL 313.3.1 A First AttemptThe system at time slot t is fully spei�ed by the state of the D-BMAP at the boundaryof slot t and t + 1 and by the urrent stak level for slot t of eah ative station. Thevalue of all these urrent stak levels an be spei�ed by a single string sksk�1 : : : s1s0,where si spei�es the number of ative stations with a urrent stak level for slot t equalto i. Therefore, the system is fully haraterized by the Markov hain (Vt;Wt), where Wtdenotes the state of the D-BMAP at the boundary of slot t and t + 1 and Vt representsthe string that holds the urrent stak level for slot t of all ative stations. It is easy tosee that (Vt;Wt) is a tree strutured Markov hain. Indeed, the node sksk�1 : : : s1s0 isthe parent of the nodes sksk�1 : : : s1s0s for s � 0. Eah node, inluding the root node ;,ontains l states (the l states of the D-BMAP) and has an in�nite number of hildren.The root node, denoted as ;, represents the ase when there are no ative stations.The hain (Vt;Wt) is not of the Quasi-Birth-Death type. For instane, suppose that thehain is in the state (J; i) with J = 2 5 at time t. Therefore, 5 ative stations have theirurrent stak level for slot t at zero, i.e., transmit in slot t, and 2 ative stations have theirurrent stak level for slot t at one. Next, suppose that 3 out of the 5 stations inreasetheir urrent stak level to one as a result of the oin ip proedure. When a ollidingstation determines to join either the �rst or the seond group, it is said to ip a oin(if p = 1=2 a fair oin). The oin ipping of all olliding stations is referred to as theoin ipping proedure. Then, at time t+ 1, the Markov hain is in the state (K; j) withK = 2 3 (2 + s) with probability (Bs)i;j (i.e., s new arrivals ourred on the boundary ofslot t and slot t+1). This type of transitions (to the grandhildren of the parent node) isnot allowed in a tree strutured QBD Markov hain. Also, the Markov hain is no longerof the GI=M=1 type (see Yeung, et al [79℄) and there is no simple or expliit solution forits stationary distribution.3.3.2 The Atual ModelIn order to solve the problem indiated in the previous setion we make the number ofstations with a urrent stak level for slot t equal to zero a part of the auxiliary variable.Ative stations that have a urrent stak level for slot t larger than zero are referred to asbaklogged stations (at time t). Consider the following Markov hain (Xt; Nt). Let Xt bethe string holding the urrent stak level for slot t of all baklogged stations (at time t).For instane, when Xt = sk : : : s2s1 there arePki=1 si baklogged stations, of whih si � 0have their urrent stak level for slot t equal to i. In this example there are no stationswith a urrent stak level for slot t larger than k. The sample spae of the random variableXt is 
1 = f;g [ fJ : J = sk : : : s1; sj � 0; 1 � j � k; k � 1g. Notie, the string J isallowed to have a number of leading zeros (see Note 1 for more omments on this issue).The random variable Xt has a tree struture. For instane, the hildren of sk : : : s1 aresk : : : s1s; s � 0. Thus, eah node in the tree has an in�nite number of hildren. Nt holdsboth the number of ative stations with a urrent stak level for slot t equal to zero andthe state of the D-BMAP at the boundary of slot t and t + 1. The sample spae of therandom variable Nt is 
2 = f(i; j) j i � 0; 1 � j � lg.



32 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSIt is easy to see that (Xt; Nt) is a Markov hain. The state spae of the Markov hain is
1�
2. In order to solve this Markov hain the nodes of Xt should have a �nite numberof hildren and the auxiliary variable Nt should have a �nite number of states. Therefore,the Markov hain (Xt; Nt) is approximated by another bivariate Markov hain (Xdt ; Ndt ).(Xdt ; Ndt ) is obtained by setting a maximum d on the number of stations that an havethe same urrent stak level for slot t (inluding stak level zero). If a situation oursin whih d + k; k > 0, stations have the same urrent stak level for slot t, k stationsare assumed to drop their paket. Thus, introduing d an ause stations to drop theirpaket. Pakets are otherwise never dropped by a station. Nevertheless, provided that dis hosen suÆiently large there should hardly be any di�erene between the performanemeasures of (Xdt ; Ndt ) and (Xt; Nt) (the di�erene between the reurrene of both Markovhains is disussed in Setion 3.5). We state that d is hosen suÆiently large if theratio of dropped pakets due to the introdution of d is smaller than 10�9, i.e., if lessthan one in a billion pakets is dropped. The introdution of the parameter d is the onlyapproximation required to evaluate the basi binary CTM algorithm with free aess.There is no obvious relationship between a suÆiently large value for d and the maximumn for whih Bn 6= 0 (also suh an n does not neessarily exist). For instane, a suÆientlylarge d for the Bulk arrival proess with v = [4℄, as de�ned in Setion 2.1.3, is found ford � 18 for L = 10, d � 12 for L = 80 and d � 10 for L = 800 (whereas Bn = 0 for n � 5in eah of the three ases).Let us now onsider (Xdt ; Ndt ) in more detail. Xdt is the string that holds the urrent staklevel for slot t of all baklogged stations. For instane, when Xdt = sk : : : s2s1 then for sibaklogged stations the urrent stak level for slot t equals i. The sample spae of therandom variableXdt is 
d1 = f;g[fJ : J = sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g. Xdt hasa tree struture, e.g., sk : : : s1s; 0 � s � d, are hildren of sk : : : s1. Therefore, eah nodein 
d1 has d+1 hildren. As opposed to the general desription of the tree strutured QBDMarkov hain (see Setion 3.2) we represent the hildren of a node by 0 to d instead of 1 tod+1. Ndt represents the number of stations that transmit in slot t (i.e., the urrent staklevel for slot t of these stations is zero) and the state of the D-BMAP at the boundary ofslot t and t+ 1. The sample spae of Ndt is 
d2 = f(i; j) j 0 � i � d; 1 � j � lg. It is easyto see that (Xdt ; Ndt ) is a Markov hain and the state spae of the Markov hain (Xdt ; Ndt )is 
d1 � 
d2.We now prove that transitions made by the Markov hain (Xdt ; Ndt ) are either transitionsto a hild or a parent node (exept from the root node ;). Assume that the Markov hain(Xdt ; Ndt ) is in node J + k at time t, i.e., Xdt = J + k. If slot t ontains a ollision of  � 2stations|that is, Ndt is of the form (; j) with  � 2; 1 � j � l|all baklogged stationsinrement their urrent stak level by one. Thus, the integers in the string J +k shift oneposition to the left and Xdt+1 = J+ks with 0 � s �  (s of the  olliding stations set theirurrent stak level for slot t + 1 at one as a result of the oin ip). Ndt+1 is determinedby j;  and the probability that a station selets the �rst group p. Thus, a ollision inslot t auses the Markov hain to make a transition to a hild node (this is also the asefor Xdt = ;). If slot t does not hold a ollision, all baklogged stations derement theirurrent stak level by one, i.e., shift one position to the right. Hene, if slot t does nothold a ollision, the hain will be in the parent node J at time slot t+ 1 (for Xdt = ; thehain remains in the root node). In onlusion, the hain an only make transitions from



3.3. MARKOVIAN MODEL 33a node to either its parent node or to one of its hildren.In order for the Markov hain (Xdt ; Ndt ) to be a tree strutured QBD Markov hain thefollowing two additional onditions have to be satis�ed. First, the probability of making atransition from state (J+k; (i; j)) to state (J; (i0; j 0)) may not dependent upon J . As notedabove, suh a transition takes plae whenever slot t does not hold a ollision. Clearly, j 0,the new state of the D-BMAP, is solely determined by j, the old state of the D-BMAP,and thus independent of J . While, i0, the number of stations that transmit in slot t+1, isdetermined by k, the number of stations that derease their urrent stak level from oneto zero, and j, the old state of the D-BMAP (beause this state j determines the numberof new arrivals on the boundary of slot t and slot t+1). Seond, the probability of makinga transition from state (J + k; (i; j)) to state (J + ks; (i0; j 0)) may not dependent upon Jand k. Suh a transition ours whenever slot t does hold a ollision. Again, j 0, the newstate of the D-BMAP, is determined by j, the old state of the D-BMAP. While, s, thenumber of stations that inrease their urrent stak level to one (as a result of the oinipping), is determined by i and the probability p. Finally, i0, the number of stations thattransmit in slot t+ 1, is determined by i; p and j, the old state of the D-BMAP (beausethis state j determines the number of new arrivals).In onlusion, the Markov hain (Xdt ; Ndt ) is a tree strutured QBD Markov hain. A treestrutured QBD Markov hain is fully haraterized by the matries Dk, Us, Ak;s andF (see Setion 3.2). The matries Ak;s hold the transition probabilities that the hain(Xdt ; Ndt ) goes from state (J + k; (i; j)) to the state (J + s; (i0; j 0)). These transitions aretransitions between sibling nodes. Two nodes are referred to as sibling nodes if they havethe same parent node. Remember that the hain (Xdt ; Ndt ) an only make transitions toits parent or to its hildren, therefore, the entries of the matries Ak;s are zero. This fatredues the memory and time requirements of the algorithm that alulates the steadystate probabilities of (Xdt ; Ndt ) when it is ergodi (for details see Setion 3.4).The matries Dk hold the transition probabilities that the hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J; (i0; j 0)). This happens when slot t does not hold a ollision.Therefore, the state i, the number of stations that transmit in slot t, must be equal tozero or one. Moreover, the state i0, the number of stations that transmit in slot t + 1,equals k, the number of stations that derease their urrent stak level from one to zero,plus some possible new arrivals. Hene,Dk((i; j); (i0; j 0)) = 8><>:(Bi0�k)j;j0 i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 i � 1; i0 � k; i0 = d;0 otherwise; (3.1)where (Bn)j;j0 holds the probability that n new arrivals our and that the input D-BMAPhanges its state from j to j 0.The matries Us hold the transition probabilities that the hain (Xdt ; Ndt ) goes from state(J + k; (i; j)) to the state (J + ks; (i0; j 0)). This happens when slot t holds a ollision.Therefore, the state i, the number of stations that transmit in slot t, must be larger thanor equal to 2. Moreover, the state i0, the number of stations that transmit in slot t + 1,equals i, the number of stations that transmitted in slot t, minus s, the number of stations



34 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSthat inrease their urrent stak level to one (as a result of the oin ipping), plus somepossible new arrivals. Clearly, s an never be larger than i. Hene,Us((i; j); (i0; j 0)) = 8><>:Cispi�sqs(Bi0�(i�s))j;j0 i > 1; i � s; i0 � i� s; i0 < d;Cispi�sqsPn�d�(i�s)(Bn)j;j0 i > 1; i � s; i0 � i� s; i0 = d;0 otherwise; (3.2)where (Bn)j;j0 holds the probability that n new arrivals our and that the input D-BMAPhanges its state from j to j 0 and Cis denotes the number of di�erent possible ombinationsof s from i di�erent items.Assume that the Markov hain is in node J = ; at time t, i.e., Xdt = ;. Then the transi-tions to the nodes s, 0 � s � d, are governed by the matries Us, whereas the transitionsto the root node ; are as follows. The matrix F holds the transition probabilities thathain (Xdt ; Ndt ) goes from state (;; (i; j)) to the state (;; (i0; j 0)). This happens wheneverslot t does not hold a ollision, i.e., i � 1. The state i0, the number of stations thattransmit in slot t + 1, equals the number of new arrivals (ourring on the boundary ofslot t and slot t+ 1). Hene,F ((i; j); (i0; j 0)) = 8><>:(Bi0)j;j0 i � 1; i0 < d;Pn�d(Bn)j;j0 i � 1; i0 = d;0 otherwise; (3.3)where (Bn)j;j0 holds the probability that n new arrivals our and that the input D-BMAPhanges its state from j to j 0.Note 1: It is possible that a string J has a number of leading zeros. The semantis ofsuh a string J is idential to that of the string J without the leading zeros. For instane,J = 0 0 4 0 5 has the same meaning as K = 4 0 5. Strings with leading zeros arise fromthe following situation. When the Markov hain (Xdt ; Ndt ) is in the root state J = ;,i.e., Xdt = ;, a transition might our to state 0. For instane, suppose that Ndt = (; j),with  � 2; 1 � j � l, and assume that the urrent stak level for slot t + 1 is set atzero for eah of the  olliding stations (as a result of the oin ip proedure). Then,at time t + 1, aording to Equation (3.2), the Markov hain (Xdt ; Ndt ) is in the node0. It might seem more appropriate to remain in the root node J = ; in suh ases, orequivalently to avoid strings with leading zeros. If we exlude this type of transitions;that is, eliminate suh strings, the node variable Xdt would have a tree struture whereevery node has d+ 1 hildren exept for the root node ; (who has d hildren). In Yeung,et al [79℄ this type of Markov hain is alled a Markov hain with a forest struture andalgorithms to alulate the steady state are provided. Both approahes lead to the samesteady state probabilities (after rearranging the states appropriately). The advantage ofallowing this type of transitions is that we get a slightly faster algorithm beause theboundary ondition is slightly less ompliated.



3.4. THE STATIONARY DISTRIBUTION OF THE QUEUE STRING 353.4 The Stationary Distribution of the Queue StringAording to Yeung and Alfa [78℄, a matrix geometri solution exists for an ergodi QBDMarkov hain with a tree struture. The Markov hain (Xdt ; Ndt ) is aperiodi wheneverthe D-BMAP modeling the input traÆ is aperiodi. The irreduibility is not alwaysinherited from the input D-BMAP, e.g., D-BMAPs with B0 = 0 or Bn = 0; n � 2. InSetion 3.5 we address the problem of determining whether the Markov hain (Xdt ; Ndt ) ispositive reurrent. De�ne, for eah string J 2 
d1, 0 � i � d and 1 � j � l�(J; (i; j)) = limt!1P [(Xdt ; Ndt ) = (J; (i; j))℄: (3.4)Denote by �(J; i) = (�(J; (i; 1)); : : : ; �(J; (i; l))) and by �(J) = (�(J; 0); : : : ; �(J; d)). Inorder to alulate the 1� l(d+1) vetors �(J) the following three sets of l(d+1)� l(d+1)matries play an important role [78℄.Let Gk; 0 � k � d, denote the matrix whose (i; v)th element is the probability that theMarkov hain (Xdt ; Ndt ) is in state (J; v) at the end of the fundamental period given thatthis period starts from state (J + k; i). These matries are stohasti for reurrent QBDMarkov hains with a tree struture (Takine, et al [62℄). Let Rk; 0 � k � d, denote thematrix whose (i; v)th element is the expeted number of visits to (J + k; v) given that(Xd0 ; Nd0 ) = (J; i) before visiting node J again. Let Vk; 0 � k � d, denote the matrixwhose (i; v)th element is the taboo probability that starting from (J + k; i), the haineventually returns to a node with the same length as J + k by visiting (J + k; v), underthe taboo of the node J and the sibling nodes of J + k, i.e., the nodes J + s; s 6= k.Yeung and Alfa [78℄ have shown that the matries Gk and Rk an be expressed in terms ofVk. Moreover, if a tree strutured QBD Markov hain does not allow transitions betweensibling nodes, they were able to shown that the following simple expressions hold:Gk = (I � Vk)�1Dk; (3.5)Rk = Uk(I � Vk)�1; (3.6)Vk = Ak;k + dXs=0 UsGs: (3.7)If however transitions between sibling nodes were allowed it would still be possible to solvethe hain but the equations would be more ompliated and the resulting iterative shememore time onsuming [78, 79℄. Notie that the matries Vk; 0 � k � d, are idential ifthe matries Ak;k; 0 � k � d, are idential. For the Markov hain (Xdt ; Ndt ) the matriesAk;k; 0 � k � d, are equal to zero, therefore the matries Vk; 0 � k � d, are idential.In the remaining part of this setion we drop the subsript k if we refer to Vk. Usingequations (3.5) and (3.7), we obtainV = dXs=0 Us(I � V )�1Ds: (3.8)



36 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSAs a speial ase of Theorem 2 in Yeung and Alfa [78℄, the matrix V an be obtained aslimN!1 V [N ℄ from the reursionV [N + 1℄ = dXs=0 Us(I � V [N ℄)�1Ds; (3.9)where V [0℄ = 0. Also, the matries Gs[N ℄ = (I�V [N ℄)�1Ds onverge to the substohastimatries Gs. Sine we do not know in advane whether the Markov hain (Xdt ; Ndt ) isreurrent, we do not use the possible stohasti nature of the matries Gs as a stoppingriterion for the reursion in (3.9). We simply repeat the reursion until all matriesGs[N ℄; 0 � s � d; have stabilized.Next, the matries Rk; 0 � k � d, are alulated from the matrix V using equation (3.6).The steady state vetors �(J) are then alulated as follows [78℄:�(J + k) = �(J)Rk; (3.10)where �(;) is the left invariant vetor of the matrix F + V , i.e., �(;)(F + V ) = �(;), and�(;) is normalized as �(;)(I �R)�1e = 1. The matrix R is de�ned as Pds=0Rs. In orderto larify the subsequent steps required to alulate the steady state probabilities we havesummarized them in the following algorithm:Algorithm:� INPUT: A sequene of matries Bn; n � 0; that haraterize the D-BMAP inputtraÆ.� STEP 1: Calulate the matries Dk; 0 � k � d, Us; 0 � s � d, and F by makinguse of formulas (3.1), (3.2) and (3.3).� STEP 2: Determine the matrix V using the iterative formula presented in (3:9).� STEP 3: Calulate the matries Rk; 0 � k � d; by means of equation (3.6).� STEP 4: Determine the vetor �(;) as follows: �(;) = �(;)(F + V ), where �(;) isnormalized as �(;)(I �R)�1e = 1.� STEP 5: Calulate de steady state probabilities of interest using the equation �(J+k) = �(J)Rk.REMARK: At the end of STEP 4 one an determine whether the parameter d was hosensuÆiently large (see Note 2), if not, d has to be inreased and the �rst four steps haveto be repeated, i.e., everything has to be realulated. For many numerial examplessetting d as small as 10 was suÆient (see Setion 3.7). Thus, one starts with d = 2 andrepeats the �rst 4 steps until d is suÆiently large. It is however possible to redue thethe omputational e�ort by making a �rst estimate for the starting value of d (instead ofd = 2). If we estimate the value of d larger than the smallest possible d for whih d is



3.5. STABILITY ISSUES 37suÆiently large, we are �nished after one run. One must however note that the largerwe hoose d, the more time it requires to ompute the �rst four steps. Therefore, oneshould try to limit the margin of overestimation. During the numerial trials we notiedthat there exists a strong relationship between a suÆiently large d and the burstiness,i.e., the variation of the number of arrivals in a time slot, of the input proess. We usedthe following heuristi method to redue the omputation times: if d = x was suÆientlylarge for a spei� D-BMAP and the next D-BMAP we are about to evaluate is more,resp. less, bursty we make use of a larger, resp. smaller, �rst estimate for a suÆientlylarge d.Note 2: We an make use of the following test to determine whether d was hosen suf-�iently large. Let � be the load, i.e., arrival rate �, of the D-BMAP modeling the aggre-gated input traÆ. From the steady state probabilities we an alulatePJ;j �(J; (1; j)).This sum is, due to the law of total probability, equal to the probability that there isexatly one ative station with a urrent stak level for slot t equal to zero. Therefore,this sum mathes the probability of having a suessful transmission. We an now om-pare this with the arrival rate �, i.e., load �, of the D-BMAP to get a value for the ratioof dropped pakets. In onlusion, we state that d is hosen suÆiently large whenever(��PJ;j �(J; (1; j)))=� < 10�9.3.5 Stability IssuesIn Chapter 1 we mentioned that Mathys and Flajolet [43℄ have shown that the basibinary CTM algorithm with free aess is stable under a Poisson ow of arrivals if thearrival rate � < :360177 (using fair oins, i.e., for p = 1=2). In this setion we indiate howto determine whether the basi binary CTM algorithm with free aess is stable underD-BMAP traÆ. De�ne S as the set of all (primitive) D-BMAPs. S an be split into twosubsets S1 and S2 suh that the CTM algorithm with free aess is stable for s 2 S1 andis unstable for s 2 S2. For instane, the CTM algorithm is stable for all D-MAPs, i.e.,D-BMAPs with Bn = 0 for n � 2:A D-BMAP s belongs to S1 if and only if the Markov hain (Xt; Nt) is stable, i.e., positivereurrent. To test whether the Markov hain (Xt; Nt) is positive reurrent, we study thestability of the Markov hain (Xdt ; Ndt ). Clearly, the hain (Xt; Nt) is transient wheneverthe hain (Xdt ; Ndt ) is transient. Indeed, (Xdt ; Ndt ) behaves idential to (Xt; Nt) exept thatit drops a paket from time to time. Clearly, this only improves the expeted delay su�eredby an arbitrary paket. The stability of the hain (Xdt ; Ndt ) is however not suÆient toprove that the hain (Xt; Nt) is stable. For instane, for every s 2 S, (X1t ; N1t ) is stable.Even when d is hosen suÆiently large, it is still possible that the dropping of theserare pakets (even when we lose less than one in a billion) auses the hain (Xdt ; Ndt ) tobeome stable while (Xt; Nt) is not. Hene, it is possible that we slightly overestimatethe stability point of a partiular arrival proess. There exists only one ase we an useto get an idea of the margin of overestimation: the Poisson result. Numerial results (notinluded in Setion 3.7) have indiated that for d = 10 the overestimation is less than



38 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESS:000003 (the hain was unstable for � = :36018 while the exat result by Flajolet states:360177). Further inreasing d would result in even smaller overestimation errors.The Markov hain (Xdt ; Ndt ) is reurrent if and only if the matries Gk; 0 � k � d, arestohasti (HE [25℄). Provided that the Markov hain (Xdt ; Ndt ) is reurrent, we de�nea heuristi measure ds for its stability as follows. Let �(i; j); 0 � i � d and 1 � j � l,be the probability that the auxiliary variable Ndt is equal to (i; j). Hene, �(i; j) =PJ �(J; (i; j)) = �(;)(I � R)�1 (see Setion 3.4). Let ds = Pj �(0; j) +Pj �(1; j) �Pj;i>1 �(i; j). ds an be seen as the di�erene between the drift towards the root nodeand the drift away from the root node. Indeed, Pj �(0; j) is equal to the probabilitythat slot t is empty, i.e., no transmission takes plae in slot t, and Pj �(1; j) is theprobability that slot t holds a suessful transmission. Therefore, Pj �(0; j) +Pj �(1; j)is the probability that the Markov hain makes a transition to a parent node. While,Pj;i>1 �(i; j) represents the probability that a ollision takes plae in slot t|that is, thehain makes a transition to a hild node. The di�erene between these two probabilitiesis used as a measure for the stability.3.6 Performane MeasuresAlthough we mainly fous on the stability harateristis of the basi binary CTM algo-rithm, we an also obtain a number of other interesting performane measures. As far asthe numerial results are onerned we restrit ourselves in this hapter to the stability.Numerial results on the mean delay and other performane measures are presented inChapter 4 in order to ompare the performane of the basi Q-ary CTM algorithm withfree aess for di�erent values of the splitting fator Q.3.6.1 The Fundamental Period and Mean DelayDe�ne �1(i; j); 0 � i � d and 1 � j � l, as the expeted length of a fundamental periodgiven that this period starts from state (J + k; (i; j)). Notie that these expeted valuesdo not depend upon J and k. �1(i; j) is the expeted number of time slots neessaryto resolve a ollision of i stations provided that the D-BMAP is in state j (at the endof the time slot in whih the i stations ollide). Let �1(i) = (�1(i; 1); : : : ;�1(i; l)) and�1 = (�1(0); : : : ;�1(d)). Then, the olumn vetor �t1 (xt denotes the transposed vetorof x) obeys the following equation:�t1 = e+ dXs=0 Us[�t1 +Gs�t1℄: (3.11)This equation is obtained as follows. The expeted length of the fundamental periodequals one if the �rst slot of the period is ollision free, i.e., if i equals zero or one (the�rst 2(d+1) rows of Us are zero, i.e., �1(i; j) = 1 for i = 0 or 1). Otherwise, the �rst slotholds a ollision and the expeted length of the fundamental period equals one (the �rstslot) plus the expeted time required to resolve the �rst group plus the expeted time



3.6. PERFORMANCE MEASURES 39required to resolve the seond group. In order to alulate the expeted time required toresolve the �rst group we apply the law of total probability on the state of the D-BMAPat the boundary of the seond and third slot of the fundamental period (the state at theboundary of the �rst and seond is j), on the number of olliding stations that selet theseond group and on the number of new arrivals ourring on the slot boundary of the�rst and seond slot of the fundamental period. In matrix form this leads to Ps Us�t1.For the expeted time required to resolve the seond group we also apply the law of totalprobability on the state of the D-BMAP at the end of the slot following the fundamentalperiod initiated by the �rst group and on the number of new arrivals on the boundaryof the last slot of the fundamental period initiated by the �rst group and the �rst of theperiod initiated by the seond group. In matrix form this leads toPs UsGs�t1. Equation(3.11) an be solved as a set of linear equations or using an iterative method.De�ne �(k; j); 1 � k � d and 1 � j � l, as the probability that Ndt = (k; j) at an arrivalinstant. Details on how to alulate �(k; j) are provided in Setion 3.6.3. Thus, theprobability that the transmission of a paket is suessful at its �rst attempt isPj �(1; j).Let U(delay) beU(delay) = dXi=1 lXj=1 �(i; j)�1(i; j): (3.12)Then U(delay) is an upper bound on the mean delay experiened by an arbitrary paket.It is possible to alulate the mean delay E(delay) as follows.De�ne �2(i; j); 1 � i � d and 1 � j � l, as the expeted delay su�ered by an arbitrarypaket provided that the �rst transmission of the paket oinided with the transmission ofi�1 other pakets and provided that the D-BMAP is in state j after the �rst transmission.Let �2(i) = (�2(i; 1); : : : ;�2(i; l)) and �2 = (�2(0); : : : ;�2(d)). The olumn vetor �t2obeys the following equation (this equation is obtained in a similar manner as Equation(3.11)):�t2 = e+ dXs=0 �MsUs�t2 +NsUs[�t1 +Gs�t2℄� ; (3.13)where Ms and Ns are the following (d+ 1)l � (d+ 1)l diagonal matries:Ms = diag(0t; a1(s)et; : : : ; ad(s)et); (3.14)Ns = diag(0t; b1(s)et; : : : ; bd(s)et); (3.15)with ai(s) = 0 for i � s, ai(s) = (i � s)=i for i > s, bi(s) = 0 for i < s, bi(s) = s=i fori � s, 0t a 1 � l vetor with all elements zero and et a 1 � l vetor with all elementsequal to one. Remark that ai(s), resp. bi(s), represents the probability that our arbitrarypaket selets the �rst, resp. seond, group after a ollision knowing that s of the ollidingstations selet the seond group. Equation (3.13) an be solved as a set of linear equationsor using an iterative method. The expeted delay experiened by a paket E(delay) is



40 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSfound asE(delay) = dXi=1 lXj=1 �(i; j)�2(i; j): (3.16)3.6.2 Other Performane MeasuresDe�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l, as the probability that the highesturrent stak level held by a station equals k and that the auxiliary variable of theMarkov hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l)) and �(k) =(�(k; 0); : : : ;�(k; d)). Reall that it is possible that a string J 2 
1 starts with a sequeneof zeros (see Note 1 in Setion 3.3.2). Therefore, �(k) = PJ2L(k) �(J) with L(k) � 
1,where L(k) is the olletion of strings J with a length m;m � k, and with exatly m� kleading zeros. De�ne R as Pdi=0Ri, then due to Equation (3.10)�(k) = �(;)(I � R0)�1 k = 0; (3.17)�(k) = �(k � 1)(R� R0) = �(;)(I � R0)�1(R� R0) k = 1; (3.18)�(k) = �(k � 1)R = �(;)(I � R0)�1(R�R0)Rk�1 k > 1: (3.19)The matrix (I � R0)�1 = Pj Rj0 exists beause R = PiRi, Ri � 0 for 0 � i � dand (I � R)�1 = Pj Rj exists. De�ne �(k; i; j); k � 0; 0 � i � d and 1 � j � l, asthe probability that the number of baklogged stations equals k and that the auxiliaryvariable of the Markov hain (Xdt ; Ndt ) equals (i; j). Let �(k; j) = (�(k; i; 1); : : : ;�(k; i; l))and �(k) = (�(k; 0); : : : ;�(k; d)). Then, due to Equation (3.10)�(k) = �(;)(I � R0)�1 k = 0; (3.20)�(k) = min(k;d)Xi=1 �(k � i)Ri(I �R0)�1 k > 0: (3.21)Next, de�ne �(k); k > 0; as the expeted number of baklogged stations with a urrentstak level equal to k. The probability of having i; i > 0; stations with a urrent staklevel equal to k; k > 0; is PJ2T (k) �(J)e, where the subset T (k) � 
1 is the olletion ofstrings J for whih the k-th integer from the right equals i. Hene,�(k) = dXi=1 i�(;)(I � R)�1RiRk�1e: (3.22)De�ne E[r℄ as the expeted number of transmissions required to transmit a paket suess-fully. E[r℄ is signi�antly smaller than E(delay) beause an ative station only transmitswhenever its urrent stak level is equal to zero. Let �(;)(I � R)�1 = (�(0); : : : ; �(d)),where �(i); 0 � i � d, is a 1� l vetor. Then, E[r℄ is found as the ratio of the expetednumber of transmissions in slot t and the expeted number of suessful transmissions inslot t E[r℄ = Pdk=1 k�(k)e�(1)e : (3.23)



3.7. NUMERICAL EXAMPLES 41Finally, let pe, resp. ps, resp. p, be the probability that a time slot is empty, resp. holdsa suessful transmission, resp. holds a ollision. Then,pe = �(0)e; (3.24)ps = �(1)e; (3.25)p = dXi=2 �(i)e: (3.26)3.6.3 The State of the Auxiliary Variable at Arrival TimesBasially, �(k; j); 1 � k � d and 1 � j � l, equals the probability that the �rst trans-mission of a paket oinides with the transmission of k � 1 other pakets and thatthe state of the D-BMAP modeling the input traÆ is j after this �rst transmission. Let�s = �(;)(I�R)�1Rs; 0 � s � d, and � = �(;)(I�R)�1. Clearly, �s and � are 1�l(d+1)vetors. Thus �s an be written as �s = (�s(0); : : : ; �s(d)), where �s(i); 0 � i � d, are1� l vetors. Similarly, � = (�(0); : : : ; �(d)) and �(;) = (�0(;); : : : ; �d(;)).Both equations presented below are a natural extension of the ommon method usedin an M/G/1 type of Markov hain to alulate the steady state probabilities of theMarkov hain at an arrival instant given the steady state probabilities at an arbitrarytime instant (see, e.g., [4℄) and by observing that the pakets that are dropped (due to d)are dropped before their �rst transmission attempt (see Equations (3.1), (3.2) and (3.3)).Let �(k) = (�(k; 1); : : : ;�(k; l))t. For k < d, we get�(k) = 1ps " 1Xi=0  �i(;)kBk + kXs=0 �s(i)(k � s)Bk�s! +dXi=2 �(i)min(i;k)Xs=0 Cisps(1� p)i�s(k � s)Bk�s35 ; (3.27)where ps was de�ned in Setion 3.6.2. For k = d, we have�(d) = 1ps " 1Xi=0  �i(;)dXj�d Bj + dXs=0 �s(i)(d� s)Xj�d Bj�s! +dXi=2 �(i)min(i;k)Xs=0 Cisps(1� p)i�s(d� s)Xj�d Bj�s35 : (3.28)3.7 Numerial ExamplesTo test whether the Markov hain (Xdt ; Ndt ) is stable, we alulate the matries Gk; 0 �k � d, and hek whether they are stohasti. The matries Gk are determined by an



42 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSiterative algorithmwhih is performed in a oating point environment; hene, the resultingmatries are never \truely" stohasti. Therefore, if all the row sums of Gk are between1�10�9 and 1, we onlude that Gk is stohasti. If there is a row in Gk for whih the rowsum is below 1� 10�4 we onlude that the matrix Gk is not stohasti. If the smallestrow sum of Gk is between 1� 10�4 and 1� 10�9 we onlude that the stohasti natureof Gk is undetermined (i.e., the reurrene of the hain (Xdt ; Ndt ) is unlear). Notie thatif (Xdt ; Ndt ) is transient we an use the value of the smallest row sum dt as a heuristimeasure of instability.As with many of the iterative formulas used in the matrix analytial approah [18, 34,46, 55, 75{77℄, the number of iterations required by formula (3.9) inreases signi�antlywhen the Markov hain (Xdt ; Ndt ) is lose to instability (e.g., 10 to 100 iterations suÆefor many stable and unstable Markov hains, while the number of iterations an beomeas large as a few thousands when the hain is (very) lose to the instability point). Thislimits the preision by whih instability points an be determined.Next, we determine the instability point of a number of D-BMAP arrival proesses pre-sented in Setion 2.1.3 for p = 1=2. The issue of using biased oins (p 6= 1=2) is brieydisussed at the end of this setion. In the remainder of this hapter, the instability pointis also referred to as the stability point as this is the point where the CTM algorithmswithes between being stable and unstable. For most of the numerial results presentedbelow the parameter d was suÆiently large for d � 10 (see Setion 3.3.2 and Note 2 inSetion 3.4).3.7.1 The Disrete Time Poisson ProessFrom Chapter 1 it follows that the basi binary CTM algorithm with free aess is stablefor � < :360177147 under Poisson input traÆ. We start by on�rming this result usingour analytial model. The results are presented in Table 3.1. The �rst olumn of Table3.1 represents the arrival rate of the input D-BMAP �, the seond indiates whetherthe hain (Xdt ; Ndt ) is stable or not (S = stable, U = unstable) and the last olumnrepresents the heuristi stability measure ds or the instability measure dt depending onwhether the Markov hain was stable or not. Aording to Table 3.1 the Markov hain(Xdt ; Ndt ) beomes unstable for � somewhere between :36015 and :3602. This is in ompleteorrespondene with the results obtained by Mathys and Flajolet [43℄. Additional runshave shown that the stability point is found in the interval [:36015; :36018℄.3.7.2 The Disrete Time Erlang ProessThe disrete time Erlang proess was introdued in Setion 2.1.3. The stability pointsfor the Erlang proess with k = 2; 3 and 4 have been determined and the results arepresented in Table 3.2. The results indiate that inreasing the parameter k results ina higher stability point. This is not surprising beause the Erlang distribution beomesmore deterministi when inreasing k. As a funtion of k, the growth of the stabilitypoint dereases as k inreases (this seems logial as the variane of the Erlang distribution



3.7. NUMERICAL EXAMPLES 43� S=U ds=dt.10000 S .9745.30000 S .5207.35000 S .1215.35500 S .0617.36000 S .0023.36010 S .0010.36015 S .0003.36020 U .9991.36030 U .9951.36050 U .9872.36100 U .9678.36250 U .9120.37000 U .6791.40000 U .2169Table 3.1: Stability under Poisson traÆ.

� = �e=k k S=U ds=dt.3625 2 S .1035.3650 2 S .0199.3655 2 S .0017.3656 2 U .9965.3658 2 U .9835.3660 3 S .1203.3670 3 S .0468.3675 3 S .0059.3676 3 U .9973.3680 3 U .9646.3675 4 S .1313.3682 4 S .0246.3684 4 U .9955.3690 4 U .9384Table 3.2: Stability under Erlang k traÆ.dereases linearly in k). For instane, the stability point of the Erlang proess with k = 15is below :37. Therefore, the di�erene between the stability point for the Erlang proesswith k = 1 and k = 15 is less than :01, while the variane of the interarrival times is 15times as large for k = 1 as opposed to k = 15.3.7.3 The Disrete Time Markov Modulated Poisson ProessThe disrete time Markov modulated Poisson proess was introdued in Setion 2.1.3. Forthe numerial examples we restrit ourselves to the interrupted Poisson proesses (IPPs).An IPP is an MMPP with two states and the arrival rate orresponding to one of thestates, say �1, is zero. The IPPs are the most bursty of all MMPPs with two statesand are therefore expeted to produe the most deviating results from the Poisson result.For instane, the algorithm under M(�; 2�1; 30; 30) input is stable for � = 3�1=2 < :359;unstable � > :36. That is, the stability point is found in the interval [:359; :36℄.� = �2=2 S=U ds=dt0.3250 S 0.06730.3400 S 0.02220.3450 S 0.00720.3466 S 0.00250.3480 U 0.99650.3500 U 0.98430.3600 U 0.9279Table 3.3: Stability under M(0; �; 300; 300)input traÆ.

� = �2=8 S=U ds=dt0.3400 S 0.02020.3450 S 0.00560.3460 S 0.00270.3466 S 0.00090.3480 U 0.99520.3500 U 0.98560.3600 U 0.9449Table 3.4: Stability under M(0; �; 210; 30)input traÆ.



44 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESS� = v1=(L + 1) v1 S=U ds=dt0.344800 2 S 0.01610.347826 2 S 0.00260.348432 2 U 0.99870.350900 2 U 0.90080.342800 3 S 0.02590.349040 3 S 0.00240.349854 3 U 0.99260.352900 3 U 0.84460.347800 4 S 0.00330.348432 4 S 0.00120.349040 4 U 0.99160.350900 4 U 0.9287Table 3.5: Stability under the Bulk arrivalproess.

� =P vi=(L + 2) P vi S=U ds=dt0.348800 2+1 S 0.00460.349854 2+1 S 0.00050.350050 2+1 U 0.99690.350400 2+1 U 0.98030.348400 3+1 S 0.00170.348735 3+1 S 0.00060.349040 3+1 U 0.99530.350900 3+1 U 0.93300.344800 2+2 S 0.00900.346620 2+2 S 0.00260.347826 2+2 U 0.98380.348400 2+2 U 0.9631Table 3.6: Stability under the Bulk arrivalproess.Tables 3.3 and 3.4 show that the interval [:3466; :348℄ inludes the stability point of boththe M(0; �; 300; 300) and M(0; �; 210; 30). Thus, although the seond IPP is by far themore bursty of the two|beause the arrivals are onentrated in 12:5% of the time slotsompared to the 50%|their stability point di�ers less than :0014. As for the inueneof orrelation, we found that the interval [:348; :349℄ ontains the stability point of theIPP with a = b = 30, i.e., the M(0; �; 30; 30) proess. Comparing this with the resultsin Table 3.3, we see that orrelation slightly dereases the stability of the basi binaryCTM algorithm with free aess (in our example less than :0024). This observation wason�rmed by other numerial examples.3.7.4 The Bulk Arrival ProessThe Bulk arrival proess is de�ned in Setion 2.1.3. Table 3.5 presents the results form = 1 with v = [2℄; [3℄ and [4℄; whereas Table 3.6 holds the results for m = 2 withv = [2; 1℄; [3; 1℄ and [2; 2℄. For eah of these proesses we gradually derease L, i.e., inreasethe arrival rate �, until the basi binary CTM algorithmwith free aess beomes unstable.Perhaps somewhat surprisingly: the v = [2; 2℄ proess is the �rst of the six proesses tobeome unstable (� 2 [:346620; :347826℄), then the v = [2℄ proess, followed by either thev = [4℄ or the v = [3; 1℄ proess (we did not attempt to distinguish these two proesses),next the v = [3℄ proess and �nally the v = [2; 1℄ proess. From these results it followsthat it is not always the most bursty proess that results in the lowest stability point.3.7.5 Summary for Fair CoinsThe stability point of the basi binary CTM algorithm with free aess under D-BMAPinput depends upon the exat de�nition of the input proess. For instane, the disretetime Poisson proess, the Erlang proesses, the Markov modulated Poisson proesses and



3.7. NUMERICAL EXAMPLES 45the Bulk arrival proesses all result in a di�erent stability point. Moreover, it is oftendiÆult to state a priori|from the harateristis of the D-BMAPs|whih of two inputproesses results in a higher stability point, i.e., maximum stable throughput. Hene, thestability results of the basi binary CTM algorithm with bloked aess are muh moretransparent as opposed to the free aess sheme (see Theorems 2.1 and 2.2 in Setion2.3).On the other hand, the stability point, i.e., maximum stable throughput, of the free aesssheme under D-BMAP input is never far below the stability point under Poisson input(in our examples: at most :014). Thus, the basi binary CTM algorithm with free aessseems to maintain its good stability harateristis under D-BMAP input traÆ. Clearly,we an always de�ne a D-BMAP with a load 0 � � � 1 for whih the CTM algorithmwith free aess is stable, for example a D-MAP. Also, although orrelation in the inputtraÆ redues the stability point somewhat, it does not devastate the stability.An interesting open problem related to this is whether there exists an arrival rate �minsuh that the basi binary CTM protool with free aess (with p = 1=2) is stable underall primitive D-BMAPs with an arrival rate � < �min. During the numerial trials, wedid not �nd a D-BMAP with an arrival rate smaller than � = :34657 = ln(2)=2 for whihthe basi binary CTM algorithm with free aess beame unstable. For instane, thev = [2; 2; 2; 2℄, v = [2; 2; 2; 2; 2℄, v = [5℄, v = [10℄ Bulk arrival proesses, the IPP witha = b = 3000 and many others turned out to be stable for an arrival rate of ln(2)=2. Thevalue ln(2)=2 is no stranger to the basi binary CTM algorithm beause in Setion 2.3we have shown that the basi binary CTM algorithm with bloked aess under primitiveD-BMAP input traÆ is stable for � < ln(2)=2� 10�5; unstable for � > ln(2)=2 + 10�5.Moreover, the expeted length of a busy period initiated by a ollision of n stationsinreases asymptotially as 2n= ln(2) provided that no new arrivals our. This resultalso indiates that the Bulk arrival proess v = [n℄ with a load smaller than ln(2)=2 isunlikely to ause instability even for large values of n and L. The question raises whetherit is at all possible to �nd a primitive D-BMAP with an arrival rate � < ln(2)=2 thatmakes the basi binary CTM algorithm with free aess unstable. If not, the basi binaryCTM algorithm with free aess results in a maximum stable throughput that is at leastas good as the orresponding sheme with bloked aess under primitive D-BMAP traÆ.We therefore formulate the following onjeture:Conjeture 3.1 The basi binary CTM algorithm with free aess is is stable underprimitive (Bn)n D-BMAP traÆ if1. � < ln(2)=2, with � the mean arrival rate,2. (Bn)n has a �nite number of states l.3.7.6 Using Biased CoinsFair oins are the optimal oins for the basi binary CTM algorithm ombined withboth the free and bloked aess strategy provided that the input proess is Poisson (see



46 CHAPTER 3. BASIC BINARY CTM WITH FREE ACCESSPP (�) M(0; �; 30; 30) ER(�; 2)p �(ds) p �(ds) p �(ds).6000 .351 .5500 .343 .6000 .359.5500 .358 .5000 .348 .5500 .364.5200 .359 .4800 .349 .5300 .365 (.0211).5100 .360 (.0012) .4700 .350 (.00047) .5200 .365 (.0264).5000 .360 (.0023) .4650 .350 (.00062) .5150 .365 (.0270).4900 .360 (.0012) .4600 .350 (.00060) .5100 .365 (.0261).4800 .359 .4500 .350 (.00011) .5000 .365 (.0199).4500 .358 .4400 .349 .4800 .364.4000 .351 .4200 .348 .4500 .362Table 3.7: The inuene of using biased oins on the stability of the basi binary CTMalgorithm with free aess.Chapter 1). Moreover, the stability under primitive D-BMAP traÆ is idential to thePoisson stability (see Setion 2.3) if the bloked aess strategy is used. Hene, fair oinsare again optimal. In this setion, we investigate whether this result is also valid if thefree aess strategy is used|that is, whether the basi binary CTM algorithm with freeaess performs best under D-BMAP input traÆ if fair oins are used (p = 1=2).For eah arrival proess a onsidered, we vary the probabilities p and q = 1 � p, anddetermine the stability point that orresponds to the ouple (a; p). De�ne � as a multipleof :001 suh that the interval ℄�; �+ 0:001[ that holds the stability point of (a; p). Whenthe stability point of di�erent ouples (a; p) lies within the same interval ℄�; � + 0:001[,we also add the stability measure ds to determine whih value for p performs best. Alarger value for ds implies a more stable Markov hain. Table 3.7 represents the stabilitypoints, i.e., maximum stable throughput, as a funtion of p for the basi binary CTMalgorithm with free aess under Poisson input traÆ, Markov modulated Poisson inputtraÆ and Erlang input traÆ. The Poisson result obtained by Mathys and Flajolet [43℄is on�rmed by our analytial model.Table 3.7 indiates that the optimal value for p for the ER(�; 2) lies somewhere in theinterval ℄:51; :52[, whereas the optimal value for the M(0; �; 30; 30) input traÆ is foundin the range ℄:46; :47[. We already mentioned that the optimum for Poisson input isp = :5. Thus, the more bursty the input traÆ the lower the optimal value of p beomes.Intuitively, this an be understood as follows: the more bursty the input traÆ beomesthe better it is to postpone the retransmission of some of the olliding pakets. Forinstane, if a ollision ours, in slot t, under Erlang traÆ it is more likely that no newarrivals will our in the next slot, slot t+1, as opposed to the slots t+i; i > 1. Therefore, itis better to hoose p slightly larger than :5. Whereas for the Markov modulated PoissontraÆ it is more likely that the D-BMAP is transmitting at a higher rate whenever aollision ours and therefore it might be interesting to postpone some of the arrivals thatour during this high rate period to a period where a lower input rate is being used (i.e.,the probability that new arrivals our in slot t+1 is larger than in slot t+ i; i > 1). Thisline of reasoning also orresponds with the Poisson result: if a ollision ours in slot t,



3.8. CONCLUSIONS 47the probability of having a new arrival in slot t + i is idential for all i > 0 (= 1� e��).Therefore, there is no reason to prefer the next slot above any of the other slots, i.e., p = :5is the optimum. Another remark is that the stability point of a single state D-BMAP(i.e., l = 1) arrival proess remains idential if we swap the value for p and q, e.g., thePoisson results in Table 3.7. Indeed, swapping both values hanges the order in whihthe two sets of olliding stations are resolved. The order is unimportant if the number ofarrivals ourring in onseutive time slots is independent.In onlusion, for bursty and orrelated arrival patterns higher throughput results an beahieved by dereasing p. It is however hard to predit the optimal value for p beause itdepends upon the statistial properties of the arrival proess.3.8 ConlusionsIn this hapter we demonstrated that the stability of the basi binary CTM algorithmwith free aess under D-BMAP input traÆ an be determined by onstruting a Quasi-Birth-Death (QBD) Markov hain with a tree struture. The following onlusions weredrawn from the numerial examples. First, the maximum stable throughput ahievedby the basi binary CTM algorithm with free aess di�ers from one arrival proess tothe other. Hene, the stability is not as transparent as its bloked aess ounterpart(see Theorem 2.1 and 2.2). Seond, orrelated and bursty arrival proesses tend to resultinto a smaller maximum stable throughput. However, the maximum stable throughputis never far below the Poisson result. Moreover, we did not �nd a primitive D-BMAPwith an arrival rate � < ln(2)=2 for whih the basi binary CTM algorithm with freeaess (p = 1=2) is unstable. The question raises whether it is at al possible to �ndsuh a primitive D-BMAP. If not, the basi binary CTM algorithm with free aess (andfair oins) outperforms its bloked aess ounterpart (see Setion 2.3) under primitiveD-BMAP input traÆ. We believe that this is the ase beause we managed to �nd manydi�erent arrival proesses with a rate �; ln(2)=2 = :34657 < � < :348, that resulted in anunstable algorithm, but none with � < ln(2)=2. Moreover, inreasing the orrelation orburstiness of a spei� arrival proess often resulted in a derease of the maximum stablethroughput that seemed to onverge to the value ln(2)=2, e.g., the Markov modulatedPoisson proesses. Nevertheless, it ould be that we have been looking at the wrong setof arrival proesses ,. Finally, fair oins are no longer the optimal oins for the basibinary CTM algorithm with free aess under D-BMAP input, as opposed to the Poissoninput ase or the bloked aess sheme. The orrelation between the number of arrivalsin slot t and t+ 1 is an important indiation as to whih oins are optimal. For instane,if there is no orrelation one expets fair oins to be optimal, e.g., the Poisson proess;while the larger, resp. smaller, the orrelation is the smaller, resp. larger, the optimal pis expeted to be.





Chapter 4The Basi and Modi�ed Q-ary CTMAlgorithm with Free Aess
In this hapter we extend the tehniques presented in the previous hapter in order tostudy the stability of the basi and modi�ed Q-ary CTM algorithm with free aess.Thus, we indiate how to onstrut a tree strutured QBD Markov hain that is reurrent,resp. transient, whenever the tree algorithm of interest is stable, resp. unstable. We startwith a detailed desription of the basi and the modi�ed Q-ary CTM algorithm withfree aess. Next, in Setion 4.2, we introdue the tree strutured QBD Markov hainsof interest. Numerial results are presented in Setion 4.3 and onlusions are drawn inSetion 4.4. The work presented in this hapter is to appear in [69℄4.1 The Basi and Modi�ed Q-ary CTM AlgorithmIn a �rst subsetion we desribe the basi Q-ary CTM algorithm with free aess, in aseond the modi�ed Q-ary CTM algorithm with free aess. We start with a summary ofthe ommon features of both algorithms. A single hannel (bus, able, broadast medium)is shared among many users (soures, nodes, stations) that transmit paketized messages.Time is slotted and transmissions an only our at the beginning of a time slot. Eahtime slot has a �xed duration equal to the time required to transmit a paket. Eahtransmission is within the reeption range of every user (in a wireless entralized LANenvironment the Base Station ould broadast the result of eah uplink transmission).The CTM algorithm is a ollision resolution algorithm (CRA) for whih eah user strivesto retransmit its olliding paket till it is orretly reeived. The users have to resolvethis ontention without the bene�t of any additional soure of information on other users'ativity.The CTM protool separates users that ollide reursively|aording to some random-ization proedure|into distint groups. The users of the �rst group retransmit in thenext slot, while the users of the i-th group, i > 1, wait until the �rst i � 1 groups areresolved. The CTM algorithm is onveniently implemented by letting eah user maintain



50 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSa urrent stak level (that is, an integer value). Users that have a paket ready to transmitare referred to as ative users. Eah ative user maintains a urrent stak level (an integervalue) and at the end of eah time slot the urrent stak level is updated. The value ofthe urrent stak level de�nes when and if a stations is allowed to (re)transmit a paket.The basi and modi�ed Q-ary CTM algorithms with free aess use a di�erent proedureto update the urrent stak level.4.1.1 The Basi Q-ary CTM Algorithm with Free AessThe urrent stak level, that is maintained by eah ative user, is updated as follows:� An ative user transmits in a time slot t whenever its urrent stak level for slott is equal to zero. A user that beame ative during time slot t � 1 initializes theurrent stak level for slot t at zero.� At the end of a time slot t in whih no ollision ours, users with a stak leveli; i > 0; for slot t set their urrent stak level for slot t+1 at i� 1 (while a possiblesuessful user beomes inative).� At the end of a time slot t in whih a ollision ours, all users with a urrent staklevel i; i > 0, for slot t set their urrent stak level for slot t+ 1 at i+Q� 1. Userswith a urrent stak level for slot t equal to zero split into Q distint groups: a userjoins the i-th group with a probability pi�1. Users that join the i-th group set theirurrent stak level for slot t + 1 equal to i� 1.Figure 3.1 shows the state diagram for the basi binary, i.e., Q = 2, CTM algorithm withfree aess; whereas Figure 3.2 presents an example of the transmission proess for Q = 2.Figure 3.2 also inludes a list of group numbers (1 or 2) for eah paket to indiate whihgroup the paket joins after eah ollision (in whih it is involved). Thus, the list 1; 2; : : :for paket E indiates that paket E joins the �rst group as a result of its �rst ollisionand the seond as a result of its seond ollision. Seleting one of the Q distint groups(after a ollision) an be seen as ipping a Q-sided oin. A distintion is made betweenfair oins, i.e., p0 = : : : = pQ�1 = 1=Q, and biased oins. We will onsider both fair andbiased oins (we do assume that all the stations use the same oins, either fair or biased).4.1.2 The Modi�ed Q-ary CTM Algorithm with Free AessThe modi�ed CTM algorithm is a well-known improvement of the basi CTM algorithmthat skips so-alled doomed slots (see Chapter 1). Doomed slots are slots for whih allative stations know a priori that the above-mentioned operation of the basi Q-ary CTMalgorithm would result in a ollision. In order to implement this optimization, ternaryfeedbak (empty, suessful or ollision slot) is required. As opposed to the basi CTMalgorithm where only binary feedbak (ollision or not) is required. The idea is thefollowing.



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 51Suppose that a ollision is followed by Q� 1 empty slots. This means that all the paketsinvolved in the ollision seleted the Q-th group. Using the basi CTM algorithm, thesestations would transmit in the next slot (together with possible newomers), generating aguaranteed ollision. The modi�ed sheme improves the basi sheme by omitting theseslots and by splitting the set of stations that would otherwise result in a guaranteedollision into Q subsets. If the next Q � 1 slots are again empty, we would get anotherguaranteed ollision and therefore the next slot is again skipped. Thus, whenever, forsome i � 1, the last 1+ i(Q� 1) slots ontain a ollision followed by i(Q� 1) empty slots,this otherwise-wasted slot an be skipped by having all stations immediately at as if ithad ourred. This modi�ed sheme is onveniently implemented using a urrent staklevel and a simple ount down ounter.Figure 4.1 presents an example of the transmission proess for Q = 3, it also inludesa list of group numbers (1, 2 or 3) for eah paket to indiate whih group the paketjoins after eah ollision (in whih it is involved). Thus, the list 2; 3; 1; 1; : : : for paket Dindiates that paket D joins the seond group as a result of its �rst ollision, the thirdas a result of its seond ollision, the �rst as a result of its third ollision (the skippedollision) and again the �rst as a result of its fourth ollision.
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Figure 4.1: Example of the Transmission Proess: CSL = Current Stak Level
4.2 Analysis of the Basi and Modi�ed Q-ary CTMAlgorithmThis setion is subdivided in four parts. Eah part desribes a tree strutured QBDMarkov hain that is stable, resp. unstable, whenever either the basi or the modi�ed



52 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSCTM algorithm, for spei� values of Q, is stable, resp. unstable. The four parts aresummarized below:1. the basi CTM algorithm with Q > 2,2. the modi�ed CTM algorithm with Q = 2,3. the modi�ed CTM algorithm with Q = 3,4. the modi�ed CTM algorithm with Q > 3.With eah new part some additional omplexity is introdued. In eah of these parts newpakets are generated aording to a D-BMAP haraterized by the matries (Bn)n (seeChapter 2) as follows. Assume that the D-BMAP is in some state i; 1 � i � l, at timet. Then, with a probability (Bn)i;j, the state at time t + 1 is j and n new pakets aregenerated at the boundary of slot t� 1 and t. Due to the free aess these n new paketsare transmitted (for the �rst time) in time slot t by their orresponding stations.4.2.1 The Basi CTM algorithm with Q > 2As in the previous hapter, we onstrut a tree strutured QBD Markov hain that allowsus to study the stability of the basi CTM algorithm with free aess, but now for Q > 2.In the remainder of this setion we indiate how to onstrut this Markov hain andhow to alulate the matries Dk, Us, Ak;s and F (see Setion 3.2) that haraterize theMarkov hain. These matries are the input variables of the iterative algorithm desribedin Setion 4.2.5.Let qi; 0 � i � Q� 1; be the probability that a station inreases its urrent stak level toi, as a result of the oin ipping proedure, provided that it does not inrease its urrentstak level to a value above i. Hene,qi = pi1�Pj>i pj ; (4.1)where pi; 0 � i � Q� 1; is the probability that a station inreases its urrent stak levelto i as a result of the oin ip.Consider the stohasti proess (Xt; Yt; Zt), where Xt denotes the baklogged string on-sisting of the status of all baklogged stations at time slot t, Yt denotes the number ofstations that transmit in time slot t and Zt denotes the state of the input D-BMAP at theend of time slot t, i.e., at the boundary of slot t and t+1. For instane, when Xt = sk : : : s1there arePi si baklogged stations, i.e., stations with a urrent stak level for slot t equalto i > 0, and for si � 0 of them the urrent stak level for slot t equals i. Denote (Yt; Zt)as the auxiliary variable Nt. In the previous hapter we have shown that this stohastiproess (to be orret its approximation (Xdt ; Ndt )) is a tree strutured QBD Markov hainif Q = 2. For Q > 2, this proess is still a tree strutured Markov hain but it is not ofthe QBD type. For instane, after eah slot in whih a ollision ours, Q� 1 integers are



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 53added to the baklogged string. These Q � 1 integers represent the number of stationsthat inrease their urrent stak level to 1; 2; : : :, Q� 1 as a result of their oin ippingproedure.Therefore, we onstrut an expanded Markov hain (Xt;Yt;Zt;Qt) and denote (Yt;Zt;Qt)as the auxiliary variable Nt. This expanded Markov hain is onstruted suh that it isa tree strutured QBD Markov hain. The tehnique used to onstrut this expandedMarkov hain is similar to the method used by Ramaswami [56℄ in order to redue anM/G/1-type Markov hain to a QBD Markov hain. The idea behind this expandedMarkov hain is that whenever a transition ours that adds Q � 1 integers to the nodevariable Xk, we split this transition into Q � 1 transitions that eah add one integer tothe node variable Xk.Assume a given realization (Xk(w); Nk(w)) of the Markov hain (Xk; Nk). The expandedhain (Xt;Nt) with Nt = (Yt;Zt;Qt) is onstruted as follows (the range of Qt is 0 toQ� 2). The random variable Qt keeps trak of how many integers remain to be added tothe node variable Xt.Initial state: If (X0(w); N0(w)) = (J; (i; j)), then set (X0(w);N0(w)) = (J; (i; j; 0)). Also,set k = 0 and t = 0, k represents the steps of the original hain and t represents the stepsof the expanded hain. We will establish a one-to-one orrespondene between the state(J; (i; j)) of the original hain and the state (J; (i; j; 0)) of the expanded hain.Transition Rules: We onsider three possibilities: Qt(w) = 0, Qt(w) > 1 and Qt(w) = 1.For Qt(w) = 0, onsider (Xk(w); (Yk(w); Zk(w))), and do one of the following:Case 1: This ase orresponds to the situation where the k-th time slot does not hold a ol-lision, i.e., Yk(w) � 1. We set Xt+1(w) = Xk+1(w) and Nt+1(w) = (Yk+1(w); Zk+1(w); 0).Thus, transitions that do not orrespond to a ollision remain idential. Next, both t andk are inreased by one.Case 2: This ase orresponds to the situation where the k-th time slot does hold a ol-lision, i.e., Yk(w) > 1. Therefore, Xk+1(w) an be written as Xk(w) + sQ�1sQ�2 : : : s2s1.Then, (Xt+1(w);Nt+1(w)) = (Xk(w)+sQ�1; (Yk(w)�sQ�1; Zk(w); Q�2)). Indeed, Qt+1(w)= Q�2 beause the Q�2 integers sQ�2 : : : s1 remain to be added to Xt+1. Next, inrementboth k and t by one.ForQt(w) > 1, Xk(w) an be written as J+sQ�1sQ�2 : : : s2s1, set Xt+1(w) = Xt(w)+sQt(w)and Nt+1(w) = (Yt(w) � sQt(w);Zt(w);Qt(w) � 1). Next, inrease t by one and do notalter the value of k.For Qt(w) = 1, Xk(w) an be written as J + sQ�1sQ�2 : : : s2s1, set Xt+1(w) = Xt(w) + s1and Nt+1(w) = (Yk(w); Zk(w); 0). Again, inrease t by one and do not alter the value ofk.The expanded Markov hain (Xt;Nt) is a tree strutured QBD Markov hain. The onlyproblem is that every node in (Xt;Nt) has an in�nite number of hildren and the auxiliaryvariable Nt has an in�nite number of states. As in the previous hapter, we an resolvethis problem by approximating the expanded hain by the hain (X dt ;N dt ) with N dt =(Ydt ;Zt;Qt)) that is obtained by putting a maximum d on the number of stations that



54 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSare allowed to have an idential urrent stak level.The expanded Markov hain (X dt ;N dt ) does not allow transitions between sibling nodes.Therefore, the entries of the matries Ak;s are zero. Looking at the transition rulesdesribed above, the transition bloks Dk and Us of the Markov hain (X dt ;N dt ) are thefollowing.The matries Dk hold the transition probabilities that the hain (X dt ;N dt ) goes from state(J + k; (i; j;m)) to the state (J; (i0; j 0; m0)). This an only happen if m = 0, m0 = 0 andi � 1. Hene,Dk((i; j;m); (i0; j 0; m0)) = 8><>:(Bi0�k)j;j0 m = 0; m0 = 0; i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 m = 0; m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.2)where (Bn)j;j0 holds the probability that n new arrivals our and that the input D-BMAPhanges its state from j to j 0 (see Chapter 2). Notie that Equation (4.2) is idential toEquation (3.1).The matries Us hold the transition probabilities that the hain (X dt ;N dt ) goes from state(J + k; (i; j;m)) to the state (J + ks; (i0; j 0; m0)). We separate three di�erent ases. First,assume that m = 0. Hene,Us((i; j; 0); (i0; j 0; m0)) = (CisqsQ�1(1� qQ�1)i�s(Il)j;j0 m0 = Q� 2; i > 1; i0 = i� s;0 otherwise; (4.3)where Il is an l� l unity matrix. We simply add the integer, that denotes the number ofolliding stations that inrease their urrent stak level to Q� 1, to the baklogged string.Seond, for m = 1, we getUs((i; j; 1); (i0; j 0; m0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0;i � s; d > i0 � i� s;Cisqs1(1� q1)i�sPn�d�(i�s)(Bn)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.4)We add the integer, that denotes the number of olliding stations that inrease theirurrent stak level to 1, to the baklogged string and allow for new arrivals to join thesheme.Finally, for Q� 1 > m > 1, we haveUs((i; j;m); (i0; j 0; m0)) = (Cisqsm(1� qm)i�s(Il)j;j0 m0 = m� 1; i0 = i� s;0 otherwise: (4.5)We add the integer, that denotes the number of olliding stations that inrease theirurrent stak level to m, to the baklogged string.



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 554.2.2 The Modi�ed CTM Algorithm with Q = 2Consider the stohasti proess (Xt; Yt; Zt), where Xt denotes the baklogged string on-sisting of the status of all baklogged stations at time slot t, Yt denotes the number ofstations that transmit in time slot t and Zt denotes the state of the input D-BMAP atthe end of time slot t, i.e., the boundary of slot t and t + 1. Let Nt = (Yt; Zt). For themodi�ed binary CTM algorithm with free aess, the stohasti proess (Xt; Nt) is notMarkovian. We illustrate this by means of an example. Let Xt = J +k; k > 1 and Yt = 0.This implies that the t-th time slot is empty and that k stations have a urrent stak levelfor slot t equal to one. Consider the following two possibilities for Xt�1.First, let Xt�1 = J and Yt�1 = k, in this ase slot t � 1 holds a ollision of exatly kstations. A state with Xt = J + k and Yt = 0 is reahed if eah of the k olliding stationsinrements its urrent stak level to one as a result of the oin ip (and no new arrivalsour). After seeing that slot t is empty, all stations know that slot t+1 would result in aollision if the basi sheme is used, i.e., slot t+1 is a doomed slot. As a result, all stationsimmediately at as if the ollision did our. Therefore, it is possible that Xt+1 = J + s(if s of the k stations deide to set their urrent stak level for slot t+1 to one as a resultof the oin ip).Seond, let Xt�1 = J + k + 0 and Yt�1 = 1, in whih ase slot t � 1 holds a suessfultransmission. A state with Xt = J+k and Yt = 0 is reahed if no new arrivals our. Dueto the suess in slot t�1, the stations do not onsider slot t+1 as a doomed slot, and theollision in slot t+ 1 will take plae. This implies that Xt+1 is equal to J . In onlusion,the state of the stohasti proess (Xt; Nt) at time t + 1 is not solely determined by thestate a time t, whih implies that (Xt; Nt) with Nt = (Yt; Zt) is not Markovian.Nevertheless, from the stohasti proess (Xt; Nt), we an onstrut a tree struturedQBD Markov hain by adding a value, say �1, to the range of Yt. Yt = �1 then impliesthat slot t is empty and that slot t+1 would have been a doomed slot (if we were using thebasi sheme). While Yt = 0 implies that slot t is empty and slot t+1 is not onsidered tobe a doomed slot. Denote the stohasti proess that is obtain by adding �1 to the rangeof Yt as (Xt;Mt) with Mt = (Yt; Zt). The transitions to and from a state with Yt = �1are as follows. We enter in a state with Yt = �1 whenever a transition ours from aollision slot to an empty slot. We stay in a state with Yt = �1 as long as the subsequentslots are empty; otherwise we enter a state with Yt 6= �1.The stohasti proess (Xt;Mt) an be shown to be a tree strutured QBD Markov hain(with similar arguments as in Setion 3.3.2). However (Xt;Mt) does allow transitionsbetween sibling nodes. This happens whenever an otherwise doomed slot is skipped. Itis possible to use a more omplex (and time onsuming) iterative formula (ompared tothe one in Setion 4.2.5), that determines whether a tree strutured Markov hain, thatdoes allow transitions between sibling nodes, is stable. Instead, we onstrut a new treestrutured QBD Markov hain (Xt;Mt) with Mt = (Yt;Zt) that only uses transitionsto parent and hild nodes. The range of the random variable Yt equals f(0; n) j �1 �ng [ f(1; n) j 2 � ng. We will establish a one-to-one orrespondene between the states(J; (i; j)) of the Markov hain (Xt;Mt) and the states (J; ((0; i); j)) of (Xt;Mt). The idea



56 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSbehind this expanded hain (Xt;Mt) is that a transition from a node J + k to a nodeJ + s is split into two transitions: a �rst one from node J + k to J , followed by a seondone from node J to J + s. When the transition from node J + k to J takes plae we storethe value of k in Yt by setting Yt = (1; k). The fat that the �rst omponent of Yt is equalto one indiates that the next transition has to be the seond step of a split transition.Assume a given realization (Xk(w);Mk(w)) of the Markov hain (Xk;Mk). The expandedhain (Xt;Mt) is onstruted as follows.Initial state: If (X0(w);M0(w)) = (J; (i; j)), then set (X0(w);M0(w)) = (J; ((0; i); j)).Also, set k = 0 and t = 0, k represents the steps of the original hain and t represents thesteps of the expanded hain.Transition Rules: We onsider two possibilities: Yt(w) = (0; i) and Yt(w) = (1; i).For Yt(w) = (0; i), onsider (Xk(w);Mk(w)) with Mk(w) = (Yk(w); Zk(w)), and do one ofthe following:Case 1: This ase orresponds to the situation where the k-th time slot holds a ollision.We set Xt+1(w) = Xk+1(w) and Mt+1(w) = ((0; Yk+1(w)); Zk+1(w)). Thus, transitionsthat orrespond with a ollision remain idential. Next, both t and k are inreased byone.Case 2: This ase orresponds to the situation where the k-th time slot does not holda ollision. This implies that Yk(w) = 0; 1 or �1. First, onsider Yk(w) = �1. ThenXk(w) an be written as Xk(w) = J + s with s > 1 and we get (Xt+1(w);Mt+1(w)) =(J; ((1; s); Zk(w))). Seond, for Yk(w) 6= �1, we get (Xt+1(w);Mt+1(w)) = (Xk+1(w);((0; Yk+1(w)); Zk+1(w))). Hene, the transitions remain idential if Yk(w) 6= �1. Next,inrement both k and t by one.For Yt(w) = (1; i), Xk(w) an be written as J+u, set Xt+1(w) = Xt(w)+u andMt+1(w) =((0; Yk(w)); Zk(w)). Next, inrease t by one and do not alter the value of k.As in the previous subsetion, we make the number of hildren in eah node and thenumber of states of the auxiliary variable Mt �nite by putting a maximum d on thenumber of stations that are allowed to have the same urrent stak level. Looking at thetransitions rules, the transition bloks Dk; 0 � k � d; and Us; 0 � s � d, are the following.The matries Dk hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise: (4.6)Notie, Equation (4.6) is idential to Equation (4.2). For m = 0 and i = �1, we setDk(((0;�1); j); ((m0; i0); j 0)) = 8>>><>>>:(Bi0�k)j;j0 k = 0 or 1; m0 = 0; i0 � k; i0 < d;Pn�d�k(Bn)j;j0 k = 0 or 1; m0 = 0; i0 � k; i0 = d;(Il)j;j0 k > 1; m0 = 1; i0 = k;0 otherwise; (4.7)



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 57where Il is an l � l identity matrix. A visit to one of the states (J + k; ((0;�1); j)),with k = 0 or 1, an never our (the states are transient with an expeted returnprobability equal to 0). Nevertheless, we an still make use of the iterative sheme inSetion 4.2.5 by making sure that the probability of eventually returning to a state of theform (J; ((m; i); j)) equals one. We realize this by making sure that the orrespondingrows of the matries D0 and D1 are stohasti. This explains the somewhat unexpeted�rst two lines in the equation above (we at as if i = 0, but any stohasti row will do).For m = 1, all entries of Dk; 0 � k � d, are zero.The matries Us hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For i 6= s, we getUs(((m; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisps1pi�s0 (Bi0�(i�s))j;j0 m0 = 0; i > 1;i > s; d > i0 � i� s;Cisps1pi�s0 Pn�d�(i�s)(Bn)j;j0 m0 = 0; i > 1; i > s; i0 = d;0 otherwise: (4.8)For i = s, we getUs(((m; i); j); ((m0; i0); j 0)) = 8>>><>>>:ps1(B0)j;j0 m0 = 0; i > 1; i0 = �1;ps1(Bi0)j;j0 m0 = 0; i > 1; 0 < i0 < d;ps1Pn�d(Bn)j;j0 m0 = 0; i > 1; i0 = d;0 otherwise: (4.9)Notie that Equation (4.8) and (4.9) are also valid for m = 0; 1 and for i = �1.4.2.3 The Modi�ed CTM Algorithm with Q = 3For the basi CTM algorithm with free aess we made use of two di�erent models, onefor Q = 2 and another for Q > 2. For the modi�ed CTM algorithm with free aess wemake use of three di�erent models. Eah model desription is only valid for the spei�edrange of Q. Rather than going through the entire proess that is used to onstrut theremaining two models, i.e., tree strutured QBD Markov hains, we restrit ourselves toa desription of the state spae of the Markov hains and their orresponding transitionprobabilities. The tehniques used to onstrut both models are a ombination of themethods used to onstrut the previous two models.The Markov hain (X dt ;Mdt ) with Mdt = (Ydt ;Zt), used to study the modi�ed ternaryCTM algorithm, is de�ned on the state spae 
d1� (
d2 �
3), where 
d1 = f;g[ fJ j J =sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g, 
d2 = f(0; i) j �1 � i � dg [ f(1; i) j 0 � i �dg [ f(2; i) j 2 � i � dg and 
3 = fj j 1 � j � lg. The transition matries Dk; Us andAk;s are the following. The entries of the matries Ak;s are all zero. Thus, the hain doesnot allow transitions between sibling nodes.



58 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSThe matries Dk hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pl�d�k(Bl)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.10)For m = 0 and i = �1, we set
Dk(((0;�1); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

(B0)j;j0 k = 0 or 1; m0 = 0; i0 = �1;(Bi0)j;j0 k = 0 or 1; m0 = 0; d > i0 > 0;Pl�d(Bl)j;j0 k = 0 or 1; m0 = 0; i0 = d;(Il)j;j0 k > 1; m0 = 2; i0 = k;0 otherwise; (4.11)
where Il is a l� l identity matrix. For m = 1 and 2, all entries of Dk; 0 � k � d, are zero.The matries Us hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For m = 0 or 2, we getUs(((m; i); j); ((m0; i0); j 0)) = (Cisqs2(1� q2)i�s(Il)j;j0 m0 = 1; i > 1; i � s; i0 = i� s;0 otherwise: (4.12)For m = 1 and i > 0, we getUs(((1; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0; i � s;d > i0 � i� s;Cisqs1(1� q1)i�sPl�d�(i�s)(Bl)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.13)While for m = 1 and i = 0, we haveUs(((1; 0); j); ((m0; i0); j 0)) = 8>>><>>>:(B0)j;j0 m0 = i = s = 0; i0 = �1;(Bi0)j;j0 m0 = i = s = 0; 0 < i0 < d;Pl�d(Bl)j;j0 m0 = i = s = 0; i0 = d;0 otherwise: (4.14)
4.2.4 The Modi�ed CTM Algorithm with Q > 3The Markov hain (X dt ;Mdt ) with Mdt = (Ydt ;Zt), used to study the modi�ed CTMalgorithm with Q > 3, is de�ned on the state spae 
d1� (
d2�
3), where 
d1 = f;g[fJ j



4.2. ANALYSIS OF THE BASIC AND MODIFIED Q-ARY CTM ALGORITHM 59J = sk : : : s1; 0 � sj � d; 1 � j � k; k � 1g, 
d2 = f(m; i) j 0 � m � Q � 3;�1 � i �dg [ f(Q � 2; i) j 0 � i � dg [ f(Q � 1; i) j 2 � i � dg and 
3 = fj j 1 � j � lg. Thetransition matries Dk; Us and Ak;s are the following. The entries of the matries Ak;s areall zero. Thus, the hain does not allow transitions between sibling nodes.The matries Dk hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J; ((m0; i0); j 0)). For m = 0 and i 6= �1, we getDk(((0; i); j); ((m0; i0); j 0)) = 8><>:(Bi0�k)j;j0 m0 = 0; i � 1; i0 � k; i0 < d;Pl�d�k(Bl)j;j0 m0 = 0; i � 1; i0 � k; i0 = d;0 otherwise; (4.15)For m = 0 and i = �1, we set
Dk(((0;�1); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

(B0)j;j0 k = 0 or 1; m0 = 0; i0 = �1;(Bi0)j;j0 k = 0 or 1; m0 = 0; d > i0 > 0;Pl�d(Bl)j;j0 k = 0 or 1; m0 = 0; i0 = d;(Il)j;j0 k > 1; m0 = Q� 1; i0 = k;0 otherwise; (4.16)
where Il is a l � l identity matrix. For m 6= 0, all entries of Dk; 0 � k � d, are zero.The matries Us hold the transition probabilities that the hain (X dt ;Mdt ) goes from state(J + k; ((m; i); j)) to the state (J + ks; ((m0; i0); j 0)). For m = 0 or Q� 1, we getUs(((m; i); j); ((m0; i0); j 0)) = 8><>:CisqsQ�1(1� qQ�1)i�s(Il)j;j0 m0 = Q� 2; i > 1;i � s; i0 = i� s;0 otherwise: (4.17)For m = 1 and i � 0,Us(((1; i); j); ((m0; i0); j 0)) = 8>>>><>>>>:Cisqs1(1� q1)i�s(Bi0�(i�s))j;j0 m0 = 0; i � s;d > i0 � i� s;Cisqs1(1� q1)i�sPl�d�(i�s)(Bl)j;j0 m0 = 0; i � s; i0 = d;0 otherwise: (4.18)For m = 1 and i = �1,Us(((1;�1); j); ((m0; i0); j 0)) = 8>>><>>>:(B0)j;j0 m0 = s = 0; i0 = �1;(Bi0)j;j0 m0 = s = 0; 0 < i0 < d;Pl�d(Bl)j;j0 m0 = s = 0; i0 = d;0 otherwise: (4.19)



60 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSWhile, for m = Q� 2,
Us(((Q�2; i); j); ((m0; i0); j 0)) = 8>>>>>><>>>>>>:

CisqsQ�2(1� qQ�2)i�s(Il)j;j0 m0 = Q� 3; i > 0;i � s; i0 = i� s;(Il)j;j0 m0 = Q� 3;i = s = 0; i0 = �1;0 otherwise: (4.20)
Finally, for 1 < m < Q� 2, we haveUs(((m; i); j); ((m0; i0); j 0)) = 8>>><>>>:Cisqsm(1� qm)i�s(Il)j;j0 m0 = m� 1; i > �1;i � s; i0 = i� s;(Il)j;j0 m0 = m� 1; s = 0; i = i0 = �1;0 otherwise: (4.21)4.2.5 Stability of a Tree Strutured QBD Markov ChainIn Setion 3.4 we argued that the stability of a tree strutured QBD Markov hain thatonly allows transitions to parent or hild nodes an be determined as follows. De�neV [0℄ = 0 and use the reursionV [N + 1℄ = dXs=0 Us(I � V [N ℄)�1Ds; (4.22)to alulate V [N ℄. The Markov hain is reurrent if the matries Gs[N ℄ = (I�V [N ℄)�1Dsonverge to a set of stohasti matries Gs; otherwise, we have a transient hain. Theiterative formula (4.22) an be further optimized by making use of the strutural propertiesof the matries Ds; Us and V [N ℄. For the basi and the modi�ed binary CTM algorithmwith free aess, this optimization was limited to an aeleration of the produt of (I �V [N ℄)�1 with the matries Ds, where we made use of the fat that about 80 perent of therows of Ds ontain nothing but zeros. For higher splitting fators Q, this perentage iseven higher (90 to 95 perent). The inversion of the matrix I � V [N ℄ was also optimizedfor Q > 2. We will demonstrate this for the basi CTM algorithm with Q > 2; thetehnique is similar (slightly more omplex) for the modi�ed sheme with Q = 3 andQ > 3.Consider the l(d+1)(Q�1)� l(d+1)(Q�1) matrix V (see Setion 3.4 for its de�nition),that orresponds to the tree strutured QBD Markov hain presented in Setion 4.2.1, the(i; v)th element of whih is the taboo probability that starting from (J + k; i), the haineventually returns to a node with the same length as J + k by visiting (J + k; v), underthe taboo of the node J and the sibling nodes of J + k. Next, subdivide the matrix V in



4.3. NUMERICAL RESULTS 61bloks of size l(d+ 1)� l(d+ 1).V = 0B� V0;0 V0;1 : : : V0;Q�2... ... . . . ...VQ�2;0 VQ�2;1 : : : VQ�2;Q�2 1CA ; (4.23)where the elements of Vq1;q2 are the taboo probabilities that starting from (J+k; (i; j; q1)),the hain (X dt ;N dt ) with N dt = (Ydt ;Zt;Qt) eventually returns to a node with the samelength as J + k by visiting (J + k; (v; u; q2)), under the taboo of the node J and thesibling nodes of J + k. Looking at the transition probabilities of (X dt ;N dt ), these tabooprobabilities are equal to zero if q2 6= 0. Thus,V = 0B� V0;0 0 : : : 0... ... . . . ...VQ�2;0 0 : : : 0 1CA : (4.24)The inverse (I � V )�1 of a matrix V with suh a struture is found as(I � V )�1 = 0BBBBB� (I � V0;0)�1 0 0 : : : 0V1;0(I � V0;0)�1 I 0 : : : 0V2;0(I � V0;0)�1 0 I : : : 0... ... ... . . . ...VQ�2;0(I � V0;0)�1 0 0 : : : I
1CCCCCA : (4.25)Clearly, the matries 0 � V [N ℄ � V;N � 0; have the same struture as V and therefore,we an redue the omplexity of the matrix inversion in (4.22) fromO(l3d3Q3) toO(l3d3Q).Moreover, the struture of V [N ℄ also implies that only the �rst l(d + 1) olumns of thematrix produts between the matries Us and (I � V [N ℄)�1Ds di�er from zero, allowingus to redue the omplexity of these produts from O(l3d3Q3) to O(l3d3Q2).It is not too diÆult to generalize the equations presented in Setion 3.6. That is, manyinteresting performane measures|inluding the mean delay|an be alulated from thesteady state probabilities of eah of these Markov hains. Numerial results that omparethe mean delay|and some other measures as well| for di�erent values of Q are presentedin the next setion.4.3 Numerial ResultsWe determine the instability point, i.e., maximum ahievable throughput, of the basiand the modi�ed CTM algorithm for di�erent arrival proesses that belong to the lass ofthe D-BMAP proesses. We mainly onsider fair oins, i.e., p0 = p1 = : : : = pQ�1 = 1=Q,and shortly disuss biased oins for Q = 2. The D-BMAP input proesses onsidered wereintrodued in Setion 2.1.3. We start with the results for the basi CTM algorithm withfair oins (for di�erent values of Q). Some �gures on the average delay and the expetednumber of retransmission are also presented.



62 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESS4.3.1 The Basi CTM Algorithm with Fair CoinsMaximum Stable ThroughputTable 4.1 presents the stability points, i.e., maximum ahievable throughput, of nine dif-ferent arrival proesses: the Poisson proess, three Markov modulated Poisson proesses,three Bulk arrival proesses and two Erlang proesses and this for Q = 2; 3; 4 and 5. Forthe Poisson proess, resp. the Erlang proesses, we start with � = 0, resp. �e = 0, andinrease �, resp. �e, until instability is reahed. For the bulk arrival proesses we �x vand derease L until instability is reahed (we started with a large value of L). Finally,for the Markov modulated Poisson proesses we �x a; b and �2 (the last one possibly as afuntion of �1) and inrease �1 until instability is reahed. For eah ouple (a;Q), wherea is an arrival proess and Q the splitting fator, Table 4.1 presents two values x and y.The �rst x is the lower bound � of the interval ℄�; � + :001[ that holds the instabilitypoint of the arrival proess a, i.e., the maximum arrival rate � of the D-BMAP for whihit is stable. The seond y indiates the di�erene between � and � in multiples of :001,where ℄�; � + :001[ holds the instability point of the Poisson proess.Let us study these results in detail. The Poisson results presented in Table 4.1 are inomplete orrespondene with the results obtained in [43℄. This means that the resultsobtained by Mathys and Flajolet [43℄ lie within the intervals presented in Table 4.1. Re-plaing the input Poisson proess by a Markov modulated Poisson proess results in aninferior stability. This implies that more bursty and more orrelated (ompare the seondMMPP with the third) input traÆ results in a worse stability, i.e., a lower maximumahievable throughput. Moreover, the higher the splitting fator Q the larger the through-put degradation, e.g., replaing the Poisson input by M(�; 0; 30; 30) input results in a lossof :012 for Q = 2, :026 for Q = 3, :035 for Q = 4 and :041 for Q = 5. Therefore,lower splitting fators Q are better equipped to ope with bursty and orrelated inputtraÆ. Intuitively, one an understand this as follows. More bursty and orrelated traÆgenerally results in more ollisions. A ollision results in an inrement of the urrentstak level of all baklogged stations. The higher Q the higher the inrement. Thus, forevery ollision one needs at least Q� 1 empty or suessful slots in order to return to thesame urrent stak level. Therefore, higher splitting fators su�er more under inreasedburstiness. Or to state it di�erently, the basi Q-ary CTM algorithm with free aess isunstable if Q times the probability that a slot holds a ollision is larger than one; whereasthe number of initial ollisions due to simultaneous new arrivals in a time slot are identialwhihever splitting fator Q is being used.Also, notie that a fator Q = 2 performs better, :004, than a fator Q = 5 for theM(�; 0; 300; 300) proess (for Poisson input it was the opposite). As a matter of fat, forany two fators Q1 and Q2, within the range [2; 5℄, one an always �nd an input proessfor whih the fator Q1 outperforms the fator Q2, exept for Q1 = 2 and Q2 = 3 (seeTable 4.1).Let us now onsider the Erlang results. Replaing the input Poisson proess by an Erlangproess results in a superior stability. This result orresponds with the previous result,i.e., less bursty traÆ results in a higher maximum ahievable throughput. Moreover, the



4.3. NUMERICAL RESULTS 63Proess Q = 2 Q = 3 Q = 4 Q = 5PP(�) .360 +0 .401 +0 .399 +0 .387 +0M (�; 2�1 ; 30 ; 30 ) .358 -2 .397 -4 .393 -6 .380 -8M (�; 0 ; 30 ; 30 ) .348 -12 .375 -26 .364 -35 .346 -41M (�; 0 ; 300 ; 300 ) .347 -13 .373 -28 .361 -38 .343 -44ER(�; 2 ) .365 +5 .419 +18 .427 +28 .425 +38ER(�; 3 ) .367 +7 .427 +26 .441 +42 .444 +57B([2 ℄; �) .348 -12 .359 -42 .327 -72 .291 -96B([3 ℄; �) .349 -11 .372 -29 .352 -47 .325 -62B([4 ℄; �) .348 -12 .371 -30 .355 -44 .332 -55Table 4.1: Stability results for the basi Q-ary CTM algorithm with free aesshigher the splitting fator Q the larger the inrement, e.g., replaing the Poisson input byER(�; 3) input results in a gain of :007 for Q = 2, :026 for Q = 3, :042 for Q = 4 and :057for Q = 5. Therefore, higher splitting fators Q are better equipped to take advantageof less bursty input traÆ (the explanation is the same as before). Finally, the Bulkarrival proesses|the most arti�ial of the proesses onsidered|are mainly introduedto indiate that exoti arrival patterns an seriously deteriorate the stability of the basiCTM algorithm, espeially for higher splitting fators Q. For the binary sheme the loss isonly about :012; whereas for Q = 5 it varies between :055 and :096. If we were to inreaseQ even more, things only beome worse, e.g., for Q = 10 the basi CTM algorithm withfree aess is unstable for an arrival rate � = :18 under B([2℄; �) input traÆ.In onlusion, when implementing the basi CTM algorithm, one should always selet asplitting fator Q = 2 or 3 beause the throughput degradation due to the introdutionof orrelation and burstiness is less severe for a low splitting fator Q, e.g., the di�ereneobserved between the worst possible and the best input traÆ is :02 for Q = 2 (see Table4.1). Although, the basi ternary CTM algorithm is more sensitive to the spei� natureof the input proess, i.e., the variation of the maximum ahievable throughput is higherompared to the binary sheme, it still remains a pratial optimum beause, for eah ofthe nine proesses onsidered, it outperforms the binary sheme.There is another important onlusion that an be drawn from these results. In theprevious hapter we did not manage to �nd a primitive D-BMAP with an arrival rate� < ln(2)=2 for whih the basi binary CTM algorithm (with free aess) is unstable, whereln(Q)=Q is the maximum stable throughput for the basi Q-ary CTM algorithm withbloked aess (see Setion 2.3). That is, for eah of the arrival proesses onsidered thebasi binary CTM algorithm with free aess outperformed its bloked aess ounterpart.Atually, we believe that this might be the ase for all the arrival proesses belonging tothe lass of primitive D-BMAPs. In this setion we did however manage to �nd an arrivalproess, e.g., the B([2℄; �), for whih the maximum stable throughput is below ln(Q)=Qfor Q = 3; 4 and 5 (ompare Tables 1.1 and 4.1). Thus, the basi Q-ary CTM algorithmwith free aess an be outperformed by its bloked aess ounterpart for Q = 3; 4 and5. Moreover, we an easily prove the following theorem.



64 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSTheorem 4.1 For any integer value Q > 2, there exists a primitive D-BMAP (Bn)n withan arrival rate � < ln(Q)=Q suh that the basi Q-ary CTM algorithm with free aess isunstable under (Bn)n input traÆ.The proof for Q = 3; 4 and 5 is given by Table 4.1. Similarly, we found that the algorithmwith Q = 6, resp. Q = 7, was unstable under B([2℄; 5:78), resp. B([2℄; 6:27), traÆ. Thearrival rate � of these two arrival proesses is :295 < ln(6)=6 and :275 < ln(7)=7. Thus,it suÆes to prove the theorem for Q > 7. Let (Bn)n be an arbitrary D-BMAP withB1 = 0, B2 6= 0 and Bn = 0 for n > 2, e.g., the B([2℄; L) arrival proess. Thus, all newarrivals our in groups of two. As a result, the probability p that a ollision ours is atleast �=2 (if � < 2). Now, looking at the Markov hain onstruted to evaluate the basiQ-ary CTM algorithm with free aess, it is lear that the basi Q-ary CTM algorithmis unstable whenever the probability p of having a ollision is larger than 1=Q. Indeed,the probability that a transition is made to a parent node (1 � p) must be larger than(Q � 1) times the probability p of making a transition to a hild node in order to havestability beause eah ollision auses the Markov hain to derease (Q� 1) levels. Thus,the sheme is unstable under (Bn)n traÆ if � � 2=Q. Furthermore, � = 2=Q < ln(Q)=Qif 2 < ln(Q), this is true for Q > 7:39. This ompletes the proof.In onlusion, forQ > 2, there exists a D-BMAP for whih the basiQ-ary CTM algorithmwith bloked aess outperforms its free aess ounterpart. Note however that the D-BMAPs used to prove the theorem are very arti�ial and have little or no pratialrelevane.
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Figure 4.2: The mean delay of the ba-si CTM algorithm with free aess underPoisson input
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Figure 4.3: The expeted number of trans-missions of the basi CTM algorithm underPoisson inputOther Performane MeasuresFigures 4.2 and 4.3 present the mean delay and the expeted number of transmissionsrespetively as a funtion of the arrival rate � under Poisson input. Figure 4.2 has oftenbeen used to indiate that having a higher stability point implies a better delay for every



4.3. NUMERICAL RESULTS 65arrival rate � below the maximum ahievable throughput. This property is however notalways valid for other arrival proesses. For instane, Figure 4.5 learly indiates that theexpeted delay for Q = 5 is (muh) smaller than the mean delay for Q = 2 if :2 < � < :33,whereas the binary sheme has a higher maximum stable throughput. Figure 4.4 presentsthe mean delay under ER(�e; 3) traÆ. Notie the big di�erene between the mean delayunder Erlang, Poisson and Markov modulated Poisson traÆ.
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Figure 4.4: The mean delay of the ba-si CTM algorithm with free aess underER(�e; 3) input
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Figure 4.5: The mean delay of the ba-si CTM algorithm with free aess underM(�1; 0; 30; 30) traÆNext, we investigate the inuene of the orrelation between the number of arrivals inonseutive time slots, on the mean delay and the expeted number of transmissions.Consider theM(�1; 0; 30; 30) arrival proess. In order to study the inuene of orrelationwe �x the arrival rate � and gradually inrease the mean sojourn time of both states(starting at a = b = 30).
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Figure 4.6: The inuene of orrelationon the mean delay for � = :1 0 500 1000 1500
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Figure 4.7: The inuene of orrelationon the expeted number of transmissions for� = :1Figure 4.6 and 4.7 present the results for � = :1; Figure 4.8 and 4.9 for � = :2. Figure 4.6and 4.7 indiate that the inuene of orrelation is hardly notieable if the arrival rate



66 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSis small. This is due to the fat that the mean arrival rate of both states is well belowthe maximum ahievable throughput. On the other hand, Figure 4.8 and 4.9 indiatethat the expeted number of transmission remains small even under high orrelation andhigh arrival rates; whereas the mean delay inreases signi�antly as a result of the strongorrelation. This strong inrease follows from the fat that �1 = :4, while the maximumstable throughput of these proesses is below :4 (see Table 4.1). Also, the ternary sheme
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Figure 4.8: The inuene of orrelationon the mean delay for � = :2 0 500 1000 1500
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Figure 4.9: The inuene of orrelationon the expeted number of transmissions for� = :2aptures the inuene of the orrelation better than the other shemes. This omes as nosurprise beause the ternary sheme has the highest maximum stable throughput for thistype of proesses. In onlusion, the higher the maximum stable throughput of a shemethe better it opes with orrelation.4.3.2 The Modi�ed CTM Algorithm with Fair CoinsTable 4.2 represents the stability results for the same nine arrival proesses studied inthe previous subsetion. For eah ouple (a;Q), where a is an arrival proess and Q thesplitting fator, Table 4.2 presents two values x and y. The �rst x is the lower bound �of the interval ℄�; � + :001[ that holds the instability point of the arrival proess a. Theseond y denotes the di�erene between the lower bounds � of the modi�ed and the basiCTM algorithm (in multiples of :001).The results for the Poisson proess are in omplete orrespondene with the results ob-tained by Mathys and Flajolet [43℄. When we fous on the result for Q = 3, we see thatthe Markov hain was unstable for an arrival rate of :407. Mathys and Flajolet [43℄ showedthat the atual stability point is :40697 (see Table 1.1). This is another strong argumentthat the impat of the parameter d is indeed very small. Let us explain this in moredetail. We know that instability of the approximated Markov hain always implies theinstability of the exat Markov hain. The only possible error exists in the fat that theapproximated hain might beome stable when the exat hain is not. This might happenwhen we hoose an arrival rate � that is frationally larger than the atual stability point.



4.3. NUMERICAL RESULTS 67Proess Q = 2 Q = 3 Q = 4 Q = 5PP(�) .388 +27 .406 +5 .400 +1 .387 +0M (�; 2�1 ; 30 ; 30 ) .384 +26 .402 +5 .395 +2 .381 +1M (�; 0 ; 30 ; 30 ) .371 +23 .380 +5 .365 +1 .346 +0M (�; 0 ; 300 ; 300 ) .370 +23 .377 +4 .362 +1 .343 +0ER(�; 2 ) .394 +29 .424 +5 .429 +2 .425 +0ER(�; 3 ) .396 +29 .432 +5 .443 +2 .444 +0B([2 ℄; �) .377 +29 .365 +6 .328 +1 .291 +0B([3 ℄; �) .378 +29 .378 +6 .353 +1 .325 +0B([4 ℄; �) .377 +29 .378 +7 .357 +2 .333 +1Table 4.2: Stability results for the modi�ed Q-ary CTM algorithm with free aessThe result for Q = 3 shows that this is not the ase even if the di�erene between bothvalues, i.e., the arrival rate � and the stability point, is only :00003.Table 4.2 indiates that the impat of implementing the modi�ed CTM algorithm is moreor less the same for eah of the arrival proesses, e.g., for Q = 2 the inrement variesbetween :023 and :027. Table 4.2 also on�rms that it is hardly worthwhile to implementthe modi�ed CTM algorithm for Q > 3. The reason that doomed slots our less frequent,for largeQ, is twofold. First, the probability that all olliding stations selet the last groupis smaller (we use fair oins). Seond, even if all olliding stations selet the last group,a doomed slot only ours if the next Q � 1 slots are unused by new arrivals. Table 4.2indiates that there are arrival proesses for whih the modi�ed binary CTM algorithmoutperforms the ternary one, e.g., B([2℄; �).As noted before, we did not manage to �nd a primitive D-BMAP with an arrival rate� < ln(2)=2 for whih the basi binary CTM algorithm (with free aess) is unstable, whereln(Q)=Q is the maximum stable throughput for the basi Q-ary CTM algorithm withbloked aess (see Setion 2.3). That is, for eah of the arrival proesses onsidered thebasi binary CTM algorithm with free aess outperformed its bloked aess ounterpart.For the modi�ed binary CTM algorithm this is not the ase. Indeed, the maximum stablethroughput under M(�; 0; 300; 300) input is part of the interval [:37; :371℄ for the modi�edbinary CTM algorithm with free aess, while its bloked aess ounterpart ahieves amaximum stable throughput of :3754 under primitive D-BMAP input (see Setion 2.3and Table 1.1). Moreover, we have the following theorem, where ln(Q)=(Q� [Q�1 + (1�Q�1) ln(1�Q�1)℄) is the maximum stable throughput of the bloked aess algorithm:Theorem 4.2 For any integer value Q � 2, there exists a primitive D-BMAP (Bn)nwith an arrival rate � < ln(Q)=(Q� [Q�1+(1�Q�1) ln(1�Q�1)℄) suh that the modi�edQ-ary CTM algorithm with free aess is unstable under (Bn)n input traÆ.The proof for Q = 2 follows from the M(�; 0; 300; 300) result in Table 4.2; whereas theresult for Q = 3; 4 and 5 follows from the B([2℄; �) result. For Q = 6 and 7 we madeuse of the B([2℄; 5:78) and B([2℄; 6:27) proess respetively. Thus, it suÆes to prove the



68 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSPP (�) M(�; 0; 30; 30) ER(�; 2)p0 �(ds) p0 �(ds) p0 �(ds).5000 .387 .5000 .371 .5000 .394.4500 .391 .4500 .379 .4500 .397.4300 .392 .4200 .382 .4400 .397.4100 .393 (.0023) .3800 .384 (.0018) .4200 .398 (.0083).4068 .393 (.0024) .3750 .384 (.0019) .4175 .398 (.0084).4050 .393 (.0023) .3700 .384 (.0018) .4150 .398 (.0082).3800 .392 .3600 .384 (.0013) .4100 .398 (.0073).3500 .390 .3400 .383 .3900 .397Table 4.3: Stability results for the modi�ed binary CTM algorithm with free aess andbiased oinstheorem for Q > 7. Now, [Q�1 + (1 � Q�1) ln(1 � Q�1)℄ is positive for Q > 1. Hene,ln(Q)=Q is smaller than ln(Q)=(Q� [Q�1+(1�Q�1) ln(1�Q�1)℄). Therefore, it suÆesto prove that there exists a D-BMAP (Bn)n with an arrival rate � < ln(Q)=Q suh thatwe get instability. Let (Bn)n be an arbitrary D-BMAP with B1 = 0, B2 6= 0 and Bn = 0for n > 2, e.g., the B([2℄; L) arrival proess. Thus, all new arrivals our in groups oftwo. As a result, the probability p that a ollision ours is at least �=2 (if � < 2). Now,looking at the Markov hain onstruted to evaluate the modi�ed Q-ary CTM algorithmwith free aess, it is lear that the algorithm beomes unstable whenever the probabilityp of having a ollision is larger than 1=Q. Indeed, the probability that a transition ismade to a parent node (1 � p) must be larger than (Q � 1) times the probability p ofmaking a transition to a hild node in order to have stability beause eah ollision ausesthe Markov hain to derease (Q � 1) levels. Thus, the modi�ed Q-ary CTM algorithmis unstable under (Bn)n traÆ if � � 2=Q. Moreover, � = 2=Q < ln(Q)=Q if 2 < ln(Q),this is true for Q > 7:39. This ompletes the proof.In onlusion, for Q � 2, there exists a D-BMAP for whih the modi�ed Q-ary CTMalgorithm with bloked aess outperforms its free aess ounterpart (see Equation 1.3and Theorem 2.1). One must however note that the D-BMAPs used to prove the theoremare very arti�ial and have little pratial relevane (exept for the Q = 2 result).4.3.3 Using Biased CoinsIn Setion 3.7.6 we disussed the use of biased oins when the basi binary CTM algorithmwith free aess is used. In this setion we study the inuene of biased oins for themodi�ed binary CTM algorithm. In Setion 3.7.6 we saw that the burstier the input traÆis the lower the optimal value of p0 beomes whenever the basi binary CTM algorithm isused. Table 4.3 on�rms that this is also the ase for the modi�ed binary CTM algorithm.However, for the modi�ed algorithm the maximum stable throughput that an be ahievedwith biased oins di�ers muh more from the maximum stable throughput ahieved withfair oins (ompared to the basi CTM algorithm, see Table 3.7). Moreover, the ranges



4.4. CONCLUSIONS 69of the optimal p0's are very di�erent from the ones that we found for the basi sheme(about :09 lower). This an be understood as follows: seleting a smaller value for p0beomes more attrative beause a lower penalty is paid when all the olliding stationsselet the last (seond) group ompared to the basi CTM algorithm.In onlusion, for bursty and orrelated arrival patterns higher throughput results anbe ahieved by dereasing p0, espeially if the modi�ed sheme is used. However, theoptimal value for p0 is hard to predit (it depends upon the stohasti nature of thearrival proess).4.4 ConlusionsWe have analyzed the throughput harateristis of the basi and modi�ed Q-ary CTMalgorithm with free aess for both fair and biased oins by onstruting several treestrutured QBD Markov hains and by determining their stability. As opposed to anyprior work, we did not restrit our study to Poisson arrival patterns but onsidered amuh more general lass of input proesses (D-BMAPs). We have shown, by means ofnumerial examples, that the binary and the ternary shemes should be preferred abovehigher splitting fators Q beause they su�er muh smaller throughput losses under burstyand orrelated input traÆ. The maximum stable throughput ahieved by the binary andternary CTM algorithm under D-BMAP input is not far below the Poisson result, i.e.,the CTM algorithm with free aess maintains its good stability harateristis under D-BMAP input. Moreover, whenever possible, it is worth to exploit ternary feedbak, i.e.,implement the modi�ed sheme, for a splitting fator Q = 2 or 3. We also demonstratedthat it might be very useful to use biased oins when the input traÆ is expeted to behighly bursty and orrelated. Dereasing the probability that a station selets the �rstgroup (after a ollision) results in higher throughput results.If we ompare the bloked aess strategy with the free aess sheme, we have proven(see Theorems 4.1 and 4.2) that there exists a primitive D-BMAP for whih the basi andmodi�ed Q-ary CTM algorithm with bloked aess outperforms its free aess ounter-part (exept for the basi binary CTM algorithm). The D-BMAPs used to prove thesetheorems are however of a rather arti�ial nature and therefore of lesser pratial impor-tane. For those D-BMAPs that are of a more pratial nature, we may onlude thatfree aess generally results in (slightly) better throughput.Another important performane harateristi is the mean delay that is experiened whentransmitting a paket. Using the QBD Markov hains that were onstruted in this thesis,it is possible to alulate the mean delay and many other performane harateristis.Numerial results have indiated that a higher maximum stable throughput does notneessarily imply a smaller delay for every arrival rate �. This was a hope expressed bymany researhers, e.g., Massey [42℄ who states \If one algorithm has a larger maximumstable throughput than another, one hopes that if the �rst algorithm is reasonably simple(so that the large maximum stable throughput was not ahieved by \trikery" that usedhigh arrivals rates to a speial advantage) then the �rst algorithm will have a better delay-



70 CHAPTER 4. Q-ARY TREE ALGORITHMS AND FREE ACCESSthroughput harateristi for all throughputs." Notie, the delay urves for the Poissoninput seemed to on�rm this hope, but the M(�; 0; 30; 30) input indiated that this is notalways the ase. Nevertheless, if an algorithm has a larger maximum stable throughput,it is expeted to ope better with orrelation.The Bit Error Ratio (BER) and apture e�ets are important harateristis of a wirelesshannel. It is fairly straightforward to see that one an extend the models presented inthis thesis in order to evaluate the CTM algorithm with free aess when applied to ahannel with Markovian apture and errors. For instane, one ould easily add the stateof the hannel as a part of the auxiliary variable of the tree strutured QBD Markovhains.



Chapter 5Tree Algorithms and Grouping
In this hapter we investigate the stability of tree algorithms that make use of a groupingstrategy. A number of tree algorithms of this type were introdued in Setion 1.4.4. Wedo not onsider Gallager's optimized version that uses the arrival times to split ollidingstations into two groups (the disrete nature of the D-BMAP arrival proess prohibits usfrom doing so). The two other algorithms disussed in Setion 1.4.4 are introdued againin the next setion and their stability under D-BMAP traÆ is disussed in Setion 5.2and 5.3. Conlusions are drawn in Setion 5.4.5.1 Tree algorithms using a Grouping StrategyA desription of the grouping mehanism due to Massey [41℄ is given below. Supposethat the random aess sheme is ativated at time t = 0. The unit of time is de�nedas the length of a slot, so that the i-th transmission slot is the time interval (i; i + 1℄. Aseond time inrement � is hosen and the i-th arrival epoh is de�ned as the time interval(i�; i�+�℄ (� is not neessarily an integer value). The �rst transmission rule used by thisalgorithm is as follows: transmit a new paket that arrived during the i-th arrival epohin the �rst utilizable slot following the ollision resolution interval (CRI) for new paketsthat arrived during the (i � 1)-th arrival epoh. The modi�er \utilizable" reets thefat that the CRI for new pakets that arrived during the (i� 1)-th arrival epoh mightend before the i-th arrival epoh has ended. If so, a number of transmission slots areskipped until the i-th arrival epoh ends. One ould improve the algorithm by shorteningthe i-th arrival epoh. This both ompliates the analysis and the implementation and isexpeted to have no inuene on the maximum stable throughput (beause it only altersthe behavior of the algorithm when there are no baklogged groups).Eah of the groups is resolved using either the basi binary or the modi�ed binary CTMalgorithm, depending on whether we have binary or ternary feedbak (the order in whihthe groups are resolved is of no importane). The CTM algorithm with a higher splittingfator Q > 2 is not expeted to improve the maximum stable throughput if � is small(see Setion 1.4.4). When a grouping strategy is being used, both ative and inative



72 CHAPTER 5. TREE ALGORITHMS AND GROUPINGstations have to monitor the hannel ontinuously (this is also true for algorithms thatapply a bloked aess strategy).5.2 Stability under D-BMAP TraÆIt is not too diÆult to determine the maximum stable throughput of the two algorithmsintrodued in Setion 5.1. We restrit ourselves to the ase where �, the grouping interval,is an integer value. In Setion 5.2.1 we prove that an algorithm that resolves the olli-sions using a grouping strategy is stable under primitive D-BMAP traÆ if the expetedtime to resolve an arbitrary group E[G℄ is smaller than � and unstable if E[G℄ > �.Afterwards we indiate how to obtain tight upper and lower bounds on E[G℄. For the twoalgorithms introdued in Setion 5.1, these bounds allow us to determine the maximumstable throughput with suÆient auray.5.2.1 A stability Condition for D-BMAP InputAn algorithm that applies a grouping strategy under primitive D-BMAP input traÆ anbe seen as a queue with the following harateristis. Assume that � is an integer. Theustomers arriving in the queue orrespond to the groups produed by the algorithm.Thus, every � time slots a new ustomer arrives|that is, we have a deterministi arrivalproess. The queue has an in�nite waiting room and a single server. A ustomer is saidto be of type j with 1 � j � l if the state of the D-BMAP (Bn)n at the start of theorresponding grouping interval was j. The group types are therefore determined by aprimitive disrete time Markov hain with transition matrix B�, where B is the transitionmatrix of the D-BMAP (Bn)n, i.e., B =PnBn. Thus, if the type of ustomer n is i thanthe type of ustomer n+1 is j with probability (B�)i;j. The servie time of a ustomer|that is, the time required to resolve the orresponding group|depends upon the type ofthe ustomer. Thus, the servie time of a ustomer of type j is t with some probabilityGj(t). Remark that the servie time of a ustomer depends on the state of the D-BMAPat the start of the orresponding grouping interval. For l the number of states of theD-BMAP, or else the number of ustomer types, equal to one the above-mentioned queueredues to a D=G=1 queue and suh a queue is known to be stable for � < 1 [23℄. Thisondition is obviously equivalent to E[G℄ < �. Another way to prove that E[G℄ < � isa suÆient ondition for stability when l = 1 is to use the Stability Lemma of Pakes [3,p264℄. For l > 1, things are slightly more ompliated.The arrival proess of our queue an be seen as a speial ase of the disrete time versionof a Markovian arrival proess with marked arrivals [25, 27℄, denoted asMMAP [K℄. Suha Markov arrival proess is haraterized by a set of m�m matries M0 and MJ with Ja string of integers, where eah integer is part of [1; K℄. The i; j-th element of MJ , withJ = j1 : : : jn, n > 0, represents the probability that a transition is made from state i toj and that n arrivals our. The type of these n arrivals is as follows: the k-th ustomerthat arrives is a ustomer of type jk. The matrix M0 haraterizes the transitions when



5.2. STABILITY UNDER D-BMAP TRAFFIC 73no new arrivals our. For K = 1 the MMAP [K℄ arrival proess redues to a D-BMAParrival proess (if we identify the matrix Bn with MJ where J is a string that onsistsof n ones). It is easily seen that the arrival proess of our queue of interest is atually aMMAP [K℄ proess with K = l and m = �l. The matrix M0 has the following form:
M0 = 0BBBBBBB�

0 I 0 : : : 0 00 0 I : : : 0 0... ... ... . . . ... ...0 0 0 : : : I 00 0 0 : : : 0 I0 0 0 : : : 0 0
1CCCCCCCA ; (5.1)

where I is the l�l unity matrix. The matriesMk, 1 � k � l, obey the following equation:
Mk = 0BBBBBBB�

0 0 0 : : : 0 00 0 0 : : : 0 0... ... ... . . . ... ...0 0 0 : : : 0 00 0 0 : : : 0 0B�(k) 0 0 : : : 0 0
1CCCCCCCA ; (5.2)

where B�(k) is obtained from B� by keeping the k-th olumn of the matrix B� andsetting all other elements to zero. The entries of the matries MJ with J a string oflength 2 or more are all zero. Now that we know that the input is a MMAP [K℄, thequeue we are interested in is a speial ase of a MMAP[K℄/G[K℄/1 queue.He [25℄ has shown that a MMAP[K℄/G[K℄/1 queue with a work onserving servie dis-ipline is positive reurrent if and only if � = �1E[G1℄ + : : : + �KE[GK℄ < 1 and it istransient if � > 1, where �i orresponds to the average number of type i ustomers ar-riving in the queueing system (per time unit) and E[Gi℄ to the expeted servie timeof a type i ustomer. In our ase the vetor (�1; : : : ; �K) is nothing but �=�, where�B = � and �e = 1 (beause � is also the invariant vetor of B�). Thus, �� is equal tothe expeted servie time of an arbitrary ustomer|that is, the expeted time requiredto resolve an arbitrary group. This proves that we get a stable, resp. unstable, systemwhenever E[G℄ < �, resp. E[G℄ > �.5.2.2 Tight Bounds on E[G℄Following Massey's approah [41℄ it is fairly straightforward to obtain a tight upper andlower bound on E[G℄ when the basi or modi�ed binary CTM algorithm is used to resolvethe groups. First, we determine the probability that a group ontains n ontenders|thatis, n arrivals our in the orresponding interval of length �. The probability that thestate of the D-BMAP is j, 1 � j � l, at the start of a grouping interval is equal to �j,where �j is the j-th omponent of the stationary vetor � orresponding to the D-BMAP(Bn)n beause � is also an invariant vetor of B�. The probability of having n arrivals in



74 CHAPTER 5. TREE ALGORITHMS AND GROUPINGan interval of length � provided that the state is j at the start of the interval, say Pj(n),is easily omputed as follows. De�ne the matries Bn;i; i > 1; n � 0; asBn;i = nXj=0 Bj;i�1Bn�j; (5.3)with Bn;1 equal to Bn. Then, Pj(n) is found as the j-th omponent of Bn;�e. Therefore,the probability that a group ontains n arrivals, say P (n), is nothing but Plj=1 �jPj(n).The expeted time required to resolve an arbitrary group E[G℄ is found as E[G℄ =Pn P (n)L(n), where L(n) represents the expeted time required by the ollision reso-lution algorithm to resolve a set of n ontenders. Massey [41℄ obtained the followingupper and lower bounds on L(n) for the basi and modi�ed binary CTM algorithm. Inorder to distinguish both algorithms we write Lb(n) for the expeted time required by thebasi binary CTM algorithm and Lm(n) as the expeted time required by the modi�edbinary CTM algorithm. For the basi binary CTM algorithm we haveLb(n) � a1n� 1 + 2Æ0;n + (2� a1)Æ1;n + (6� 2a1)Æ2;n + (26=3� 3a1)Æ3;n; (5.4)with a1 = 2:8867 and Æi;j = 0 if i 6= j and 1 if i = j. Moreover,Lb(n) � a2n� 1 + 2Æ0;n + (2� a2)Æ1;n + (6� 2a2)Æ2;n + (26=3� 3a2)Æ3;n; (5.5)with a2 = 2:8810. Whereas for the modi�ed binary CTM we �ndLm(n) � b1n� 1 + 2Æ0;n + (2� b1)Æ1;n + (11=2� 2b1)Æ2;n + (8� 3b1)Æ3;n; (5.6)with b1 = 2:6651 andLm(n) � b2n� 1 + 2Æ0;n + (2� b2)Æ1;n + (11=2� 2b2)Æ2;n + (8� 3b2)Æ3;n; (5.7)with b2 = 2:6607. If we alulate E[G℄ = Pn P (n)L(n) and replae L(n) by its lower,resp. upper, bound we obtain a lower, resp. upper, bound on E[G℄. Whenever the lowerbound is larger than � we know from Setion 5.2.1 that the algorithm is unstable, whereasif the upper bound is smaller than � we have a stable sheme. For those arrival ratesthat produe an upper bound larger than � and a lower bound that is smaller we knownothing. This proedure allows us to determine the stability point for any value of � witha preision of :001 or better ; that is, we an �nd an interval [x; x + :001℄ that ontainsthe maximum stable throughput of the algorithm.5.3 Numerial ResultsBefore we present some atual numerial results, it is worthwhile to have a loser look atthe upper and lower bounds of Lb(n) and Lm(n) presented in Setion 5.2.2. With thesebounds one an easily obtain an interval for eah value of � that ontains the maximumstable throughput under any primitive D-BMAP input traÆ. The length of this intervalwill redue as � is inreased.



5.3. NUMERICAL RESULTS 755.3.1 Seleting a Large Grouping Interval �Using Equation (5.4) and Lb(n) � a1n for n > 0, we haveE[G℄ = Xn�0 P (n)L(n)� Xn>0 a1nP (n) + P (0)= a1��+ P (0):Hene,� < 1a1 (1� P (0)=�); (5.8)is a suÆient ondition for the stability of the grouping algorithm whih uses the basibinary CTM algorithm to resolve the groups. Thus, only the presene of empty groupsmight redue the maximum stable throughput below 1=a1 = :3464. This is a �rst indi-ation that a grouping algorithm might not be able to support a high maximum stablethroughput under bursty input traÆ|that is, traÆ of whih the arrivals are onen-trated in a small portion of the grouping intervals of length �. Numerial examples thaton�rm this idea are presented further on. Obviously, P (0) < 1 if � > 0. As a result wehave stability if� < 1a1 (1� 1=�); (5.9)for any primitive D-BMAP input traÆ.Using Equation (5.5), we haveE[G℄ = Xn P (n)L(n)� a2Xn nP (n)�Xn P (n) +2P (0) + (2� a2)P (1) + (6� 2a2)P (2) + (26=3� 3a2)P (3)� a2��� 1 + 2� a2= a2��� (a2 � 1):Thus, the grouping algorithm that uses the basi binary CTM algorithm is unstable if� > 1a2 �1 + a2 � 1� � : (5.10)In onlusion, the maximum stable throughput of the grouping algorithm that uses thebasi binary CTM algorithm to resolve the groups is found in the interval [1=a1(1 �



76 CHAPTER 5. TREE ALGORITHMS AND GROUPING� basi binary modi�ed binary2 .1732 .6736 .1876 .68793 .2309 .5647 .2501 .58394 .2598 .5103 .2814 .53195 .2771 .4777 .3002 .500710 .3118 .4124 .3377 .438320 .3291 .3797 .3565 .407050 .3395 .3602 .3677 .3883100 .3430 .3536 .3715 .38211000 .3461 .3478 .3748 .376510000 .3464 .3472 .3752 .37591 .3464 .3471 .3752 .3758Table 5.1: Maximum ahievable throughput for the basi and modi�ed binary CTM al-gorithm when ombined with a grouping strategy (fair oins)1=�); 1=a2(1 + (a2 � 1)=�)℄. In other words, the algorithm is stable under primitive D-BMAP input traÆ if � < 1=a1(1� 1=�) and unstable if � > 1=a2(1+ (a2� 1)=�). Simi-larly, for the modi�ed binary CTM algorithm we �nd the interval [1=b1(1�1=�); 1=b2(1+(b2 � 1)=�)℄. Numerial results for di�erent values of � are presented in Table 5.1. Forinstane, whatever the D-BMAP input proesses might be its orresponding maximumstable throughput is found in the interval [:3291; :3797℄, resp. [:3565; :407℄ if � = 20. Inthe next setion we indiate that we an atually �nd arrival proesses for whih themaximum stable throughput is lose to 1=a1(1� 1=�) and 1=a2(1 + (a2 � 1)=�). Hene,it is not possible to further redue the size of the intervals in Table 5.1.Obviously, for � large we �nd that the interval redues to [1=a1; 1=a2℄, resp. [1=b1; 1=b2℄.Both these intervals are rather small and ontain the maximum stable throughput of theorresponding algorithm with bloked aess (see Setion 1.4.4 and Setion 2.3). Thus,whether the basi, resp. modi�ed, binary CTM algorithm uses a bloked aess strategyor a grouping strategy (with � large) makes little di�erene as far as the maximum stablethroughput under primitive D-BMAP input traÆ is onerned. In the next setion weinvestigate what happens if � is small.5.3.2 Seleting a Small Grouping Interval �In this setion we study the maximum ahievable throughput as a funtion of � for di�er-ent arrival proesses. We subsequently disuss the disrete time Poisson proess, Erlangproesses, Markov Modulated Poisson proesses and Bulk arrival proesses. De�nitionsand abbreviations for these proesses an be found in Setion 2.1.3.Markov Modulated Poisson Proesses: We start with a disussion of the Markovmodulated Poisson proesses (MMPPs). Figure 5.1, resp. 5.2, ompares the maximumstable throughput as a funtion of � (2 � � � 10) for a few MMPPs when the basi,



5.3. NUMERICAL RESULTS 77resp. modi�ed, binary CTM algorithm is ombined with a grouping strategy. Both �guresare almost idential, exept that the modi�ed sheme supports throughputs whih are afew perentages higher.
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78 CHAPTER 5. TREE ALGORITHMS AND GROUPING1=a1(1�1=�), resp 1=b1(1�1=�). For instane, the basi, resp. modi�ed, CTM algorithmwith grouping has a maximum stable throughput under M(�; 0; 30; 3000) input traÆ of� :1770, resp. � :1915. The M(�; 0; 30; 3000) proess is very bursty: the average sojourntime in the silent state is 3000 slots, whereas the average time in the ative state is only30 slots. Therefore, all the traÆ is more or less onentrated in 1 perent of the groupingintervals of length �.Erlang Arrival Proess: Figures 5.3 and 5.4 present the results for the Erlang arrivalproesses. As expeted we get a higher maximum stable throughput if k is inreased,i.e., if the proess beomes more deterministi. Also, the results for the ER(�; 10) proessare only a few perentages below 1=a2(1 + (a2 � 1)=�), resp. 1=b2(1 + (b2 � 1)=�). Fork = 50 we found a maximum stable throughput for � = 2 of :623, resp. :6415. It is easyto prove that the maximum stable throughput for � = 2 onverges to :625, resp. :6429,as k approahes in�nity.
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Figure 5.4: The impat of � on the max-imum stable throughput (modi�ed)It is possible to �nd D-BMAP arrival proesses for whih these grouping algorithms sup-port a higher maximum stable throughput (up to 1=a2(1+(a2�1)=�), resp. 1=b2(1+(b2�1)=�)). For instane, the following primitive D-BMAP arrival proess has a maximumstable throughput for � = 2 of � :6725, resp. � :687.B0 = 0� 0 0 01� 1=p 0 1=p0 0 0 1A ; B1 = 0� 0 1 00 0 00 0 0 1A ; B100 = 0� 0 0 00 0 01 0 0 1A :The other Bn matries are zero. This arrival proess was onstruted suh that P (1) =1�(x+y), P (100) = x and P (101) = y for x+y small. The arrival rate � = (1+100=p)=(2+1=p). For p large, � � 1=2 and both algorithms are stable (for � = 2) when this D-BMAP is used as input traÆ. In order to determine the maximum stable throughput,we derease p, i.e., inrease �, until both grouping algorithms beome unstable. Similararrival proesses an be onstruted for � > 2.



5.4. CONCLUSIONS 79Bulk Arrival Proess: Figures 5.5 and 5.6 present the results for some Bulk arrivalproesses. The results are in agreement with the explanations given in the MMPPssetion.
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Figure 5.6: The impat of � on the max-imum stable throughput (modi�ed)5.4 ConlusionsIn this hapter we evaluated the stability of the basi and the modi�ed binary CTMalgorithm when ombined with a grouping strategy under primitive D-BMAP traÆ.The length of the grouping interval was denoted as �. We have proven that the basisheme is stable under primitive D-BMAP traÆ if the arrival rate � < 0:3464(1� 1=�)and unstable if � > 0:3471(1 + 1:881=�), numerial values for these bounds are found inTable 5.1. A similar result was obtained for the modi�ed sheme. These results imply thatthe grouping strategy provides similar stability guarantees as the bloked aess strategyprovided that � is hosen suÆiently large. Moreover, for small values of � one an�nd D-BMAPs with an arrival rate lose to 0:3464(1� 1=�), resp. 0:3471(1 + 1:881=�),that result in an unstable, resp. stable, behavior. In general, one may onlude that morebursty arrival proesses have a smaller maximum stable throughput ompared to the moredeterministi ones (for small values of �).
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Chapter 6The Identi�er Splitting Algorithmombined with Polling (ISAP)
In this hapter the Identi�er Splitting Algorithm ombined with Polling (ISAP) is intro-dued. The inuene of the di�erent protool parameters on the performane measuresis studied in Chapter 7 by means of several analytial models. Numerial results arepresented in Chapter 8. The Identi�er Splitting Algorithm (ISA) was �rst introduedby Petras, et al [50{52℄ during the European RACE projet 2067 on Mobile BroadbandSystems (MBS) [44℄. ISA is an algorithm used to resolve ollisions ourring on the on-tention hannel, present in the Medium Aess Control (MAC) layer of the MBS protoolstak. The ontention hannel is used by the Mobile Stations to inform the Base Sta-tion about their urrent bandwidth requirements. The ISA sheme is a variation on thedeterministi splitting algorithm introdued by Capetanakis [7, 17℄. As opposed to theCapetanakis sheme, whih traverses the ontention tree in a depth-�rst approah, ISAuses a breadth-�rst approah.ISA was designed to ope with the delayed feedbak environment typially found in a wire-less aess network (see Setion 6.1), whereas most splitting algorithms require immediatefeedbak due to the depth-�rst approah. Perhaps the most important advantages of theISA sheme, or any other deterministi splitting algorithm, are the obvious upperboundprovided on the worst ase delay and the fat that splitting algorithms are known toperform well under low and high load onditions.As a part of the European ACTS program a trial platform for Mobile Broadband Systems(MBS) was designed and implemented in the ontext of the SAMBA projet (AC204) [57℄.The trial platform used slotted ALOHA [1, 3℄ as the ontention algorithm. This was notdue to the fat that people had seond thoughts about ISA, but simply beause the trialplatform onsisted of 2 Base Stations and 2 Mobile Stations. Clearly, you do not need toimplement a powerful ontention resolution algorithm in an environment with only twoompeting Mobile Stations. If the number of Mobile Stations inreases, random aessbeomes more important and more advaned ollision resolution algorithms will be usedto improve the performane of random aess hannels [54, 6.2: General Guidelines℄. Thepurpose of this hapter is to introdue suh an advaned ontention resolution algorithm.



84 CHAPTER 6. THE ISAP ALGORITHMThis hapter is strutured as follows. In the next setion, we introdue the onept of adelayed feedbak environment. We proeed with the ISA protool proposed by Petras, etal [50{52℄. Next, we indiate how ISA an be ombined with Polling, this ombination isalled the ISAP sheme. Afterwards, a number of optimizations are disussed. Finally, aowhart for an MS using ISAP is presented.6.1 A Delayed Feedbak EnvironmentIn this setion we desribe a framework for entralized wireless aess networks. A numberof MAC proposals found in literature �t into this framework: DSA++ [52, 74℄, D2MA [37℄,EC-MAC [59℄ and [70{72℄.Consider a ellular aess network with a entralized arhiteture, i.e., the area overedby the wireless network is subdivided into a set of geographially distint ells, eah witha diameter of approximately 100m (slight overlaps are allowed to failitate the handoversfrom one ell to a neighboring ell). Eah ell ontains a Base Station (BS) serving a�nite set of Mobile Stations (MS). The MSs ommuniate among eah other and with thenodes in the �xed network via the BS (see Figure 6.1).

BS (Base Station)
BS

BS

MS

MS

MS

MS

MS (Mobile Station)

MS

MS

MS

MS

MAC Domain

WN (Wired Network)Figure 6.1: Referene on�guration of the systemTwo logially distint ommuniation hannels (uplink and downlink) are used to supportthe information exhange between the BS and the MSs. Pakets arriving at the BS arebroadasted downlink, while upstream pakets must share the radio medium. The BSontrols the aess to the shared radio hannel (uplink). The aess tehnique usedis Time Division Multiple Aess (TDMA) ombined with Frequeny Division Duplex(FDD) to separate the uplink and downlink hannels. The ISAP algorithm an alsobe implemented if the aess tehnique is Time Division Duplex (TDD). In the further



6.1. A DELAYED FEEDBACK ENVIRONMENT 85desription we assume that we are working with an FDD system.The battery onsumption of a mobile node is still one of the main onerns when designinga wireless network [59℄. To indiate the importane of power onsumption: one of themain reommendations for future trial platforms made during the European SAMBAtrial platform is to further redue the size and power onsumption of Mobile BroadbandSystems [44℄. Therefore, traÆ on both the uplink and downlink hannel is grouped into(�xed length) frames. The fat that battery redutions an be ahieved by using a framestruture will beome apparent in the sequel of this setion.The uplink and downlink frames are synhronized in time, i.e., the header of a downlinkframe is immediately followed by the start of an uplink frame (after a negligible roundtrip time that is aptured within the guard times, see Figure 6.2). Eah uplink frameonsists of a (variable or �xed length) ontentionless and a (variable or �xed length)ontention period, where the length of the ontentionless period dominates that of theontention period. An MS is allowed to transmit in the ontentionless period after re-eiving a permit from the BS. The BS distributes the permits among the MSs based onthe urrent requirements of eah MS. Therefore, MSs must inform the BS about theirurrent bandwidth needs using requests. Whenever an MS forwards a paket to the BSa request is piggybaked to the paket. When a paket that is generated in an MS �ndsthe transmission queue empty (in that MS), it uses the ontention period to inform theBS about its presene (i.e., it uses the ontention period to sent a request). Piggybakingis not possible in suh ase. Notie, piggybaking is only a performane optimization andnot a requirement.
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Figure 6.2: Frame StrutureEah downlink frame starts with a frame header in whih the required feedbak on theontention period of the previous uplink frame is given. This informs the MSs parti-ipating in the ontention period whether a ollision ourred or whether their requesthas been suessfully reeived. Apart from the feedbak information, the frame headerontains permits for the ontentionless period of the uplink frame and announes theidentity of the MSs reeiving a paket in the downlink frame. MSs whose identity is notmentioned an swith to the sleep mode until the start of the next downlink frame (unlessthey transmit something in the uplink diretion).We mentioned that piggybaking is merely an optimization. As far as the ontention han-



86 CHAPTER 6. THE ISAP ALGORITHMnel is onerned, one ould also replae it by a (periodi) polling sheme. For instane,in a Passive Optial Network (PON) a periodi polling sheme is used by the OptialNetwork Units (ONUs) to inform the Optial Line Termination point (OLT) about theirbandwidth requirements [53℄. In general, a polling sheme is easy to implement, espeiallyif the number of users remains �xed, e.g., in a wired network, but requires a reasonableamount of bandwidth (a few Mbit/s). These few Mbits are less expensive in a wired net-work, where one has hundreds of Mbits available, but beome very expensive in a wirelessnetwork. Therefore, it might be better to use a ontention hannel (with piggybaking)or to ombine both methods. In the next setion, we present the Identi�er SplittingAlgorithm (ISA).6.2 The Identi�er Splitting Algorithm (ISA)The Identi�er Splitting Algorithm is haraterized by two parameters:� L : the maximum number of ontention slots allowed in a single uplink frame (seeSetion 6.1),� Q : the splitting fator.The funtionality of these parameters beomes apparent in the remainder of this setion.Let us �rst introdue the notion of a ontention yle (CC). A ontention yle (CC)onsists of a number of onseutive upstream frames during whih the ontention of allrequests, present in the MSs at the beginning of the yle, is resolved. The system is gated,in the sense that any request generated by an MS that wants to aess the ontentionhannel during a CC is bloked until the start of the next CC.A single ontention slot is available in the �rst frame of a CC. We refer to this slot aslevel 0 of the ontention tree. Any MS having a request ready at the start of the CCmakes use of this slot. Next, the BS heks whether a suessful transmission ourred inthis slot and informs the MS(s) that were involved in the sheme aordingly in the nextdownstream frame using a feedbak �eld. Three situations are possible:� The slot was empty, i.e., none of the MSs aessed the ontention hannel. As aresult a new CC starts in the next frame.� An MS sending its request in this slot sueeded. In this ase the MS returns to thepiggybaked state. Again, a new CC starts in the next frame.� A ollision ourred. In this ase, the next level (level 1) of the CC provides Qontention slots. Based on the �rst digit of their MAC addresses, as opposed to thelassial oin ip, the MSs involved split up into Q distint sets. An MS belongingto the �rst set uses the �rst slot of level 1 to attempt a retransmission, the seondset uses the seond slot of level 1 and so on.



6.3. THE ISAP ALGORITHM 87The proess of generating Q slots in a level for eah slot of the previous level in whih aollision ourred, is repeated level after level, eah time using the next digit of the Q-aryMAC address in ase of a ollision. Thus, during the i-th level of a CC two MSs anonly ollide if the �rst i digits of their MAC addresses are idential. Therefore, providedthat the address that uniquely identi�es an MS is n digits long, ollisions are alwaysresolved at level n. Notie, the number of ontention slots, for eah level, equals Q timesthe number of ollisions during the previous level. Figure 6.3 shows an example of a CCwith 6 partiipants for Q = 2. In this �gure CO refers to a ollision, SU to a suessand EM to an empty slot. The MAC addresses of the suessful MSs are added to theorresponding slot.
LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

CO

CO CO

CO

CO

SUCO

SU SU

LEVEL 4

LEVEL 5

CO

CO

SU SU

EM

EMEM

SU

0011 1010 1000 1001 0011 0100

1000 1010 0011

0110 0101 1001

0010 0100 1111

1000 0011 0110Figure 6.3: Demonstrating ISAA level of the ontention tree orresponds to a single frame, exept when the numberof slots at level i is larger than some prede�ned value L. This parameter L de�nes themaximum number of ontention slots that we allow in a single frame. Thus, if a ertainlevel of the tree requires x = mL+ j slots with m � 0 and 1 � j � L then m+ 1 framesare required to support this level.6.3 The Identi�er Splitting Algorithm Combined withPollingThe Identi�er Splitting Algorithm ombined with Polling is haraterized by three pa-rameters:� L : the maximum number of ontention slots allowed in a single uplink frame (see



88 CHAPTER 6. THE ISAP ALGORITHMSetion 6.1),� Q : the splitting fator,� Np : the trigger value for the polling feature.Thus, the parameter Np is added to the sheme. One of the attrative features of theIdenti�er Splitting Algorithm (ISA) is that as a CC is being resolved, the BS obtainsmore and more information about the addresses of the MSs whih are still ompeting.For example, if the BS noties that the tree at level i (see Figure 6.3) ontains k ollisionsand the MAC-addresses are n digits long, then the BS onludes that the remainingompeting MSs an only have kQn�i possible addresses. This follows from the fat thateah slot at level i orresponds toQn�i addresses. In suh ase, we state that the remainingsize of the MAC address spae is equal to kQn�i. This information an be used by theBS in an attempt to improve the performane harateristis.We propose the following method: when the size of the remaining MAC address spaeY beomes smaller than some prede�ned value, say Np, the protool swithes to polling.Polling, in this ontext, means that one slot is provided for eah address in the remainingaddress spae. Depending on the relationship between L and Y (� Np), one or multipleframes are required to support polling. The introdution of the parameter Np, referred toas the trigger value, not only allows us to improve the performane of the ISA sheme, butalso provides some additional hallenges as far as the performane evaluation is onernedbeause it reates additional dependenies between a number of random variables (seeChapter 7).6.4 Skipping the First Few LevelsIn the previous two setions the ontention period of the �rst frame of a CC onsistedof a single ontention slot (level 0 of the ontention tree). Now we drop this ondition:instead of starting with just one ontention slot in the �rst frame, we provide more thanone slot during the �rst frame of a CC. The idea to o�er more than 1 slot for the �rsttransmission attempt is far from unommon in splitting algorithms with bloked aess[51, 63℄ [3, p291℄. The starting level is said to be Sl, with 0 � Sl � n, if the �rst frame ofthe CC ontains QSl ontention slots. An MS taking part in the ontention yle seletsone of these QSl slots based on the �rst Sl digits of its n-digit MAC address. We needdQSl=Le frames to support the starting level Sl.The starting level Sl an either be �xed at a prede�ned value or an hange in time. A�xed starting level Sl is expeted to have a positive impat on the delay. Apart fromthat, the throughput might improve in ase of high loads [51℄. Unfortunately, as shownin the numerial results, this results in some additional throughput losses during low loadperiods. To solve this we propose a sheme that hanges the starting level dynamiallybetween level Smin and Smax. To make this deision the system load � is not taken intoaount, as this value is hard to measure or predit in real systems. We therefore use thelength of the previous CC as follows.



6.5. MULTIPLE INSTANCES OF ISA 89The starting levels are de�ned using the following two threshold values: Bl and Bm.Suppose that at some point in time the starting level of a CC equals Sl and let L be thelength of this CC, then the new starting level S 0l obeys the following equation:S 0l = 8<: max(Sl � 1; Smin) L � BlSl Bl < L < Bmmin(Sl + 1; Smax) L � Bm : (6.1)Clearly all MSs wanting to aess the ontention hannel need to be aware of the urrentstarting level. We suggest that this knowledge is broadasted by the BS at the start ofevery CC. Therefore, it is not neessary for all MSs, inluding those that do not use theontention hannel, to keep trak of the lengths of the CCs.6.5 Multiple Instanes of ISAIn what follows we demonstrate by means of an example how multiple instanes of theISA protool an be reated from a single instane with a �xed starting level Sl � 1 . Forthis example (see Figure 6.4) the starting level Sl is �xed at 1 and Q is set at 2. As anbe seen in Figure 6.4 all ollisions in the right-hand side of the tree are resolved at level3. Suppose that during these 3 levels a number of MSs, not neessarily partiipating in
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Figure 6.4: Creating Multiple Instanes of ISAthis CC and some with the �rst bit of their MAC address equal to 1, have generated anew request. Then, aording to the previous setions, they have to wait until the startof the next CC; that is, until the end of level 5. Alternatively, the BS may initiate a newinstane of the ISA protool, to be used by all MSs belonging to the seond half of thetree, thereby reating a seond instane of the ISA protool. The �rst instane is used by



90 CHAPTER 6. THE ISAP ALGORITHMall MSs whose �rst bit of their address equals 0, the seond half is devoted to the otherMSs, the MAC addresses of whih start with a 1.In general, the ISA protool with starting level Sl and a splitting fatorQ an be unoupledto form QSl di�erent instanes of ISA, where eah instane orresponds with a partitionof the address spae. Another advantage of this method is that the ontention slotsare spread more uniformly over onseutive frames, as the di�erent instanes are notneessarily in phase, i.e., the tops of the di�erent trees might our in di�erent frames.The disadvantage of unoupling is that we an no longer derease the starting level belowlevel Sl. It is possible to ombine multiple instanes and polling, but we do not onsiderit.6.6 MS BehaviourThe behaviour of the di�erent MSs, using a single instane of the ISAP sheme, is de-sribed in Figure 6.5 by means of a ow hart. The following notations are used. Anarrow that is aompanied by a apital S indiates that the transition is made at theend of a frame header, i.e., after reeiving the feedbak information from the BS. Let Abe a MAC address, Ai the i-th digit of the MAC address A, vf(A; i) the integer valuedenoted by the �rst i digits of the MAC address A and vl(A; i) the integer value denotedby the last i digits of the MAC address A. For instane for Q = 2, vf(101101; 3) = 5 andvl(101101; 4) = 13.As long as an MS is not using the ontention hannel, it remains in the inative state.An MS that generates a request makes a transition to the bloked state. There it remainsuntil the urrent CC is solved, heking the feedbak �eld at the beginning of everyframe. The feedbak �eld, whih is present in the downlink frame header, ontains thefollowing sub�elds: a bit, denoted as the l-bit, whih indiates whether the urrent levelhas �nished, a bit, denoted as the -bit, whih indiates whether the urrent CC has�nished (if set: the starting level of the next CC is also inluded), an integer value Tdenoting the number of ollisions that ourred (so far) at the urrent level and a set ofbits, one for eah ontention slot, where a 0 indiates a suess (or an empty slot) and a1 a failure. Notie that one feedbak bit for eah ontention slot is suÆient as we do nottake apture e�ets into aount.One the urrent CC has ended|that is, the -bit is set|three parameters `Lvl', `Pos'and `O�set' are initialized. They have the following funtion:� Lvl : indiates the urrent level of the CC, therefore its value is inremented by oneat the start of eah level during a CC.� Pos : is a variable that holds the number of the ontention slot to be used by theMS (the slots are numbered starting from 1).� O�set : an integer value that keeps trak of the number of slots, belonging to theurrent level, present in prior frames.
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Figure 6.5: The Flow Chart of an MS (A = MAC address of the MS)After initialization the MS waits for the frame that ontains slot number `Pos' by makinguse of the `O�set' value. Next, the transmission state is entered. A transmission takesplae in slot number `Pos' and the result is found by heking the orresponding feedbakbit. If suessful we return to the inative state, otherwise the MS sets the parameter Nand waits until the urrent level has �nished. N indiates the number of ollisions thathave ourred at the urrent level before slot number `Pos'. Next, the MS heks to seewhether a swith to polling is made and depending on this result assigns a new value to`Pos'. This routine is repeated until a suessful transmission ours. Cheking to seewhether a swith to polling is made at level i + 1 simply onsists of alulating the sizeof the remaining address spae and omparing the result with Np. Due to the fat that aslot at level i orresponds with Qn�i addresses, the size of the remaining address spae isfound by multiplying the number of ollisions at that level i by Qn�i.
6.7 More Optional ParametersThe numerial examples presented in Chapter 8 indiate that the polling feature has apositive impat on the delay. It does however redue the throughput ahieved on theontention hannel. In order to limit the throughput losses aused by the polling feature,one ould add another parameter Mp to the ISAP sheme. Whenever the ISAP shemeis enrihed by the Mp parameter, we refer to it as the M -ISAP sheme.



92 CHAPTER 6. THE ISAP ALGORITHMThe aim of M -ISAP is to guarantee a minimum throughput on the polling slots. Notie,ISAP already guarantees a worst ase throughput Tpoll on the polling slots ofTpoll = 2QblogQ Np : (6.2)For instane, for Q = 3 and Np = 30, we get Tpoll = 2=27. Equation (6.2) an beunderstood as follows. The worst possible throughput on the polling slots is reahed whenthe swith to polling ours as a result of a single ollision, ontaining two ontenders, atthe highest possible level. Looking at equation (6.2), ISAP hardly provides any guaranteefor large values of Np. A better guarantee is ahieved by prohibiting ISAP to swith topolling until a ertain level, say Mp, is reahed. Indeed, the slots used for polling have aminimum throughput of Tpoll ofTpoll = 2min(Qn�Mp+1; QblogQNp) ; (6.3)where n is the length of a MAC address. For instane, for Q = 2; n = 8; Np = 35 andMp = 6 we get a worst ase throughput of 0:25 on the polling slots. In the same senarioISAP would only guarantee a throughput of 0:0625 on the polling slots.



Chapter 7Analysis of the Identi�er SplittingAlgorithm ombined with Polling
In this hapter we study the ISAP algorithm by means of several analytial models [65{67℄. The main objetive of these models is to obtain experiene that allows a well-foundedunderstanding of the impat of the di�erent protool parameters and to reveal possibledelay vs. throughput tradeo�s. Numerial results of this study are presented in Chapter8. Petras, et al [50{52℄ have studied the �rst two moments of the length of an ISACC with k ontenders, by means of reursive formulas. Their main assumption is thatevery level an be supported by a single frame, i.e., the parameter L is not taken intoaount. Fernandez and Sallent [15℄ have studied none deterministi splitting algorithmsin a hybrid Fiber-Coax Broadband Aess Network by means of funtional equations.They also traverse the ontention tree in a breadth-�rst approah. The aess networkonsidered by Fernandez does not ontain a frame struture: the system is slotted andeah level of the ontention tree is separated by B ontentionless time slots. Therefore,the analysis is very di�erent from ours.This hapter is subdivided into �ve setions. A number of simplifying assumptions aremade in Setion 7.1, that apply to all the analytial models presented. In Setion 7.2, westart by introduing a model for the binary ISA sheme. We ontinue with the binaryISAP sheme, i.e., we add the polling feature. Next, we onsider �xed and variablestarting levels and multiple instanes. In Setion 7.3, we generalize these models to theQ-ary ase. Setion 7.4, indiates how to evaluate M -ISAP (see Setion 6.7). In Setions7.2 to 7.4 the parameter L is not taken into aount (see Setion 7.1). Finally, in Setion7.5, we alulate some important expeted values that provide insight on the interationof the parameter L with the other protool parameters.7.1 AssumptionsLet n be the size of the MAC-addresses (in digits). The number of MSs loated within thereah of the BS is assumed to beQn|that is, all MAC addresses are utilized. Furthermore,



94 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISthe aggregate traÆ, generated by all MSs on the uplink ontention hannel, is assumedto have a Poisson distribution with a mean of � requests per frame. As the number ofMSs is �nite and equals Qn, the number of requests generated during a CC should neverexeed Qn. Therefore, we drop at random some of the arrivals if this value is exeeded (forx > Qn arrivals, we drop x � Qn arrivals). Alternatively, we ould drop the last x � Qnarrivals. The fat that we drop these arrivals at random (instead of dropping the lastx � Qn arrivals) should hardly have any inuene on the numerial examples presented,beause the probability of having more thanQn arrivals during a CC is negligible. Randomdropping assures that the requests arrive in a uniform way during a CC. Hene, de�nethe random variable Ii as the number of requests generated during a CC onsisting of iframes, thenP [Ii = k℄ = (�i)kk! e��i; k < Qn (7.1)P [Ii = Qn℄ = Xk�Qn (�i)kk! e��i: (7.2)Notie, we do not need to onsider bursty input traÆ sine we are observing the aesshannel used by an MS that wants to transmit a request after a period of silene. Inreal-life systems the following holds with respet to the number of MSs partiipating andtheir addresses:� MSs that were suessful during the last frame of a CC will never partiipate in thenext CC.� Partiipating MSs, regardless of the frame in whih they were suessful, are lesslikely to take part in the next CC as opposed to those that did not partiipate atall.To keep the model analytially tratable, both these remarks are ignored. Thus, theaddresses of the MSs taking part in the sheme at the beginning of a CC are uniformlydistributed over the omplete address spae and their number is distributed aording toa Poisson distribution, where the mean depends on the length of the previous CC.In the �rst three parts (Setions 7.2 to 7.4), we assume that eah level of the CC orre-sponds with a single frame, i.e., L is assumed to be large enough to support any level ofthe splitting algorithm. Therefore, we annot use the model to study a system in whihthe ontention hannel is highly loaded. Notie that eah level of a CC an always besupported by a single frame if a CC has k � 2L=Q partiipants, whatever the addressesof these k stations might be. Indeed, a level requires x > L slots whenever x=Q ollisionsourred during the previous level. In order to have y ollision we need at least 2y MSspartiipating. In Setions 7.2 to 7.4, Np and QSl are smaller than or equal to L. In thefourth part (Setion 7.5), we drop the assumption on L and onsider all Np and Sl values.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 957.2 Analysis of the Binary ISAP ProtoolThe work presented in this setion was published in [66℄. In the �rst subsetion wealulate the throughput and the delay density funtion of the ISA sheme (Setion 7.2.1).In a seond subsetion we fous on ISAP with a �xed starting level Sl = 0 (Setion 7.2.2).Afterwards, we onsider other �xed starting levels (Setion 7.2.3) and variable startinglevels (Setion 7.2.4). The following random variables will be used in the sequel of thissetion.� X, resp. Xa, denotes the number of ontenders or partiipants in a CC for the ISA,resp. ISAP protool.� R, resp. Ra, denotes the level at whih the CC is resolved (i.e., the number offrames needed minus one) for the ISA, resp. ISAP sheme.� C()i , resp. C(a)i , denotes the number of ollisions at level i for both protools. Thesevariables range from 0 to 2i.� Pa denotes the level at whih we poll for the ISAP sheme. If the sheme is solvedwithout polling we let Pa be equal to n + 1.Furthermore we use the symbolCnr to denote the number of di�erent possible ombinationsof r from n di�erent items.7.2.1 The Identi�er Splitting Algorithm (ISA)The Delay Analysis(A) We start by studying the random variable R onditioned on X. Notie that atlevel i the address spae is split into 2i equal parts of size 2n�i. For the sheme to beollision free at level i we an only allow one partiipating MS in eah subspae. Thisresults inP [R � i j X = k℄ = 2(n�i)kC2ikC2nk : (7.3)This an be proven by notiing that P [R � i j X = k℄ = P [R � i j X = k �1℄ 2n�i (2i�(k�1))=(2n�(k�1)) using indution on k. An alternative proof is based on themultivariate hypergeometri distribution. By subtration we obtain P [R = i j X = k℄,whih is denoted as p(k; i+ 1) (we write i + 1 to indiate the number of frames used).(B) Let us now fous on X. Clearly X is the steady-state vetor of the Markovianproess (X()n )n, where X()n denotes the number of ontenders during the n-th CC. Due



96 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISto (A),t(k; j) def= P [X()n+1 = j j X()n = k℄ = n+1Xt=1 (�t)je��tj! p(k; t); (7.4)for 0 � j � 2n � 1. For j = 2n we assign the remaining probability mass. X is thenfound by solving the eigenvetor problem. Applying the de�nition of the expeted valuegives us the mean number of partiipants E[X℄ in a CC.(C) Before we an alulate the delay we still need to make the following observation.Consider an arbitrary arrival in a CC, then we need to know the probability that thisCC is k frames long and that there will be l ontenders in the next CC. We denote L()urand X()next as the length of the CC in whih an arbitrary arrival ours and the numberof partiipants in the next CC. Some straightforward reasoning shows that the followingrelationships between X()next, L()ur and X hold:P [X()next = l℄ = P [X = l℄lE[X℄ (7.5)and P [L()ur = l℄ = �l 2nXk=0 P [X = k℄p(k; l)=E[X℄ (7.6)where p(k; l) was de�ned in (A). Notie,Pl P [L()ur = l℄(�l)k�1=(k�1)! e��l = P [X()next =k℄. Let us prove equality (7.5) (equation (7.6) an be found in a similar way). Considera �nite set of N of onseutive CCs. Denote Ti(N) as the number of CCs during whihi arrivals our. Then, the probability that an arbitrary arrival ompetes, during a CC,with i � 1 other arrivals equals iTi(N)=(Pi iTi(N)). As N ! 1, Ti(N)=N approahesP [X = i℄ and Pi iTi(N)=N approahes E[X℄.Combining (A), (B) and (C) Having the results from (A), (B) and (C), we analulate the mean delay. Clearly the delay onsists of two parts. The �rst part D1 isthe time until the start of the next CC and the seond part D2 is the number of framesneeded until our tagged request is suessful. Using expression (7.6) and knowing thatthe arrivals are distributed uniformly within a CC (see Setion 7.1), the expeted valuefor the �rst part equalsE[D1℄ = n+1Xi=1 P [L()ur = i℄i=2: (7.7)By de�nition of the expeted value the seond part equalsE[D2℄ = nXi=0 Xk�1 P [X()next = k℄(i + 1)(F(i; k)� F(i� 1; k)); (7.8)



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 97where F(i; k) denotes the probability that a tagged request is suessful at or before leveli given that there where k�1 other ontenders (F(�1; k) is zero in the expression above).Again we an prove by indution thatF(i; k) = C2n�2n�ik�1C2n�1k�1 : (7.9)Adding E[D1℄ and E[D2℄ results in the mean delay.The delay density funtion Using (A), (B) and (C), it is easy to show that thedelay density funtion D(x) (with x between 1 and 2(n + 1)) is given by the followingstep funtion:D(x) = bxXs=1 n+1Xj=dxe�s 2nXl=1 F(s� 1; l)�F(s� 2; l)j Gj(l)P [L()ur = j℄; (7.10)where Gj(l) = (�j)l�1(l�1)! e��j for l < 2n � 1 and Gj(2n) = Pj�2n�1 (�j)l�1(l�1)! e��j. In (7.10)s denotes the number of transmissions (inluding the suessful transmission) a taggedrequest needs, j refers to the length (in frames) of the CC in whih our tagged request isgenerated and l � 1 equals the number of other ompetitors apart from our tagged one.The Throughput AnalysisIn this setion we determine the throughput of the ISA sheme. First, de�ne two moresets of random variables S()i and S(a)i , being the number of slots used at level i by bothshemes. From the foregoing we already obtained P [X = k℄; thus, the throughput T isfound asT = E[X℄P2nk=0 P [X = k℄E[Pi S()i j X = k℄ : (7.11)We ould alulate the expeted number of slots in this formula as was done in [51℄ (usinga strong reursive sheme). Still, it is possible to get the same results using a more diretapproah as follows. First, notie thatE[Xi S()i j X = k℄ = 1 + nXi=1 E[S()i j X = k℄: (7.12)On the other hand we know that the expeted number of slots at level i equals twie theexpeted number of ollisions at level i � 1, while the expeted number of ollisions atlevel i mathesE[C()i j X = k℄ = 2i 1� C2n�2n�ikC2nk � 2n�iC2n�2n�ik�1C2nk ! : (7.13)



98 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISHene, by substituting the summation indexE[Xi S()i j X = k℄ = 1 + 2n+1 nXi=1 "2�i 1� C2n�2ikC2nk !� C2n�2ik�1C2nk # : (7.14)As it turns out, the right-hand side of equation (7.14) was already obtained by TrabbPardo [17℄ in 1977. At that time splitting algorithms were not yet invented, but thesequantities are also relevant to the analysis of tries in omputer algorithms.7.2.2 The Identi�er Splitting Algorithm ombined with PollingThe Delay AnalysisIn this setion we will follow the same lines of reasoning as in Setion 7.2.1 and we startby studying P [Ra � i j Xa = k℄.(A') Two ases an be onsidered. First, the CC might be solved before level i or atlevel i due to polling, seondly, it might be solved at level i without a swith to polling.Hene,P [Ra � i j Xa = k℄ = P [Ra � i� 1 [ Pa � i j Xa = k℄+P [Ra = i \ Pa > i j Xa = k℄: (7.15)The �rst probability is disussed in (A1'), the seond in (A2').(A1') We alulate the omplementary probability mass. By de�nition of the pollingmehanism (see Setion 6.3) we haveP [Ra � i \ Pa > i j Xa = k℄ = P [C(a)i�1 > � Np2n�i+1� j Xa = k℄: (7.16)The right-hand side is found using the following relationship:P [C(a)i�1 = � Np2n�i+1�+ x j Xa = k℄ = P [C()i�1 = � Np2n�i+1� + x j X = k℄; (7.17)for x � 1, but not neessarily for x � 0. To prove this we must show that havingj Np2n�i+1k+x ollisions at level i� 1 given k ontenders for ISA implies the same for ISAPand vie versa. Clearly, if ISAP had this number of ollisions (at level i � 1 given kpartiipants), polling did not our before; thus, we have the same e�et for ISA. Onthe other hand if the ISA sheme results in that many ollisions, ISAP ould not haveswithed to polling beause the remaining address spae is too large at level i�1 and anonly derease in size as the level inreases.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 99Our main objetive now is to �nd the probability that we have exatly l ollisions atlevel i given k partiipants (when using the ISA sheme). Although these values are easyto desribe mathematially by a sum of multivariate hypergeometi probabilities, this isof no pratial use due to the high omputational omplexity. A more ompliated butappropriate way would be to apply the Inlusion-Exlusion Priniple [29, 73℄. Due tothe alternating sign, this method tends to give numerial problems for large values of n.We propose the following variation on the Inlusion-Exlusion Priniple (where the �rstequality is a onsequene of (7.3)):s(i; 2i; k) = 2(n�i)kC2ikC2nk ; (7.18)s(i; l; k) = C2il lXl1=0 2(n�i)l1C ll1C2n�l2n�ik�l1C2nk � 2i�lXx=1 C l+xl s(i; l + x; k); (7.19)where s(i; l; k) = P [C()i = 2i � l j X = k℄. We an use (7.18) and (7.19) in a oatingpoint environment for n � 7.(A2') In this ase eah ollision at level i � 1 involves only two MSs, otherwise theyannot be solved at level i. The probability that suh a ollision is solved, at level i,equals 2n�i2n�i+1�1 . Thus by means of the multivariate hypergeometri distribution we getP [Ra = i \ Pa > i j Xa = k℄ =b k2Xu=ui�1+1 2(n�i+1)(k�2u)�C2n�i+12 �uC2i�1u C2i�1�uk�2uC2nk � 2n�i2n�i+1 � 1�u ; (7.20)where ui denotes j Np2n�ik.(B',C') Let us de�ne pa(k; i + 1) as P [Ra = i j Xa = k℄. Steps (B') and (C') arestraightforward to obtain from (B) and (C). To alulate the mean delay, we need to�nd Fa(i; k), i.e., the probability that a tagged request is suessful at or before level igiven that we had k ontenders (for the ISAP sheme). We denote ui�1 + 1 as vi; thus,vi = 1+b Np2n�i+1 . In (A1') it was argued that the event C()i�1 � vi is the same as C(a)i�1 � vi,when onditioned on X, resp. Xa, whih in its turn oinides with Pa > i \ Ra � i.Hene,Fa(i; k) = P [Ra � i� 1[Pa � i j Xa = k℄+Xs�vi P [Rt � i\C()i�1 = s j X = k℄; (7.21)where Rt denotes the level at whih our tagged request is suessful. This �rst probabilitywas found in (A1'). The seond one is found using the methodology of equations (7.18)



100 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISand (7.19) as follows. We de�ne t(i; s; k) as P [Rt � i \C()i�1 = 2i�1 � s j X = k℄. We get(where the �rst equation is a onsequene of (7.3))t(i; 2i�1; k) = 2(n�i+1)kC2i�1kC2nk (7.22)t(i; s; k) = C2i�1s sXl1=0 2(n�i+1)l1Csl1C2n�s2n�i+1k�l1C2nk � l1k + �1� l1k� C2n�s2n�i+1�2n�ik�l1�1C2n�s2n�i+1�1k�l1�1 !� 2i�1�sXx=1 Cs+xs t(i; s+ x; k):(7.23)When we look at the delay density funtion we an make use of formula (7.10) (wherethe indies a are used instead of ). This onludes the delay analysis.The Throughput AnalysisSine we already know the probabilities P [Xa = k℄ from the delay analysis, it is suÆientto �nd E[Pi S(a)i j Xa = k℄. Unfortunately this is not as straightforward as one mightexpet. We start in a similar manner as in the previous setion. The expeted number ofslots used equals the sum of the expeted number of slots used at eah level. By de�nitionof the ISAP sheme we haveE[S(a)i j Xa = k℄ = P [Pa = i j Xa = k℄ E[S(a)i j Xa = k \ Pa = i℄ + : : :P [Pa > i \Ra � i j Xa = k℄ E[S(a)i j Xa = k \ Pa > i \ Ra � i℄; (7.24)by observing that the expeted number of slots is zero ifRa � i�1. The seond probabilitywas obtained in (A1'), the �rst one is alulated as P [Ra � i�1[Pa � i j Xa = k℄ minusP [Ra � i� 1 j Xa = k℄, two results that were also obtained in (A'). The omputation ofboth expeted values remains (for i � 2 sine S(a)0 and S(a)1 are trivial to obtain). Theyare disussed in (D') and (E').(D') First onsider E[S(a)i j Xa = k \ Pa > i \Ra � i℄. In this ase the number of slotsused at level i equals two times the number of ollisions at level i � 1. Also in (A1') itwas shown that the event Pa > i \Ra � i is the same as C()i�1 � vi, when onditioned onXa, resp. X. Thus it is suÆient to �ndE[C()i�1 j X = k \ C()i�1 � vi℄:This expeted value is obtained using the de�nition of the expeted value ombined with(7.17)E[C()i�1 j X = k \ C()i�1 � vi℄ = vi + 2i�1�viXs=0 sP [C()i�1 = s+ vi j X = k℄P [C()i�1 � vi j X = k℄ ; (7.25)



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 101where we applied the following proposition. If an event A � C then P [A j B \ C℄ equalsP [A j B℄=P [C j B℄. In this ase, A is equal to C()i�1 = s+ vi and C is hosen as C()i�1 � vi.(E') As opposed to the �rst ase, i.e., (D'), the expeted number of slots equals 2n�i+1times the expeted number of ollisions at level i � 1 provided that we do poll at level iand we have k ontenders. Also, sine the event Pa = i is the same as Ra � i \C(a)i�1 < viwe are atually looking forE[C(a)i�1 j Xa = k \ Ra � i \ C(a)i�1 < vi℄: (7.26)We start with the following observation:E[C(a)i�1 j Xa = k \ Ra � i℄ =P [C(a)i�1 � vi j Xa = k \Ra � i℄ E[C(a)i�1 j Xa = k \ Ra � i \ C(a)i�1 � vi℄ + : : :P [C(a)i�1 < vi j Xa = k \ Ra � i℄ E[C(a)i�1 j Xa = k \Ra � i \ C(a)i�1 < vi℄; (7.27)where the expression of interest is part of the right-hand side. Both probabilities arelearly eah others' omplement; thus, it is suÆient to alulate the �rst. To do thisremark again that if an event A � C then P [A j B \ C℄ equals P [A j B℄=P [C j B℄.Applying this result with A equal to C(a)i�1 � vi and with C as Ra � i, (A is a part of Cbeause vi > 0) yields the following expression for the �rst probability:P [C(a)i�1 � vi j Xa = k℄=P [Ra � i j Xa = k℄: (7.28)Both these values were obtained in setion (A'). Again two expeted values remain un-known, (E1') and (E2') are devoted to them.(E1') We start with the one in the right-hand side. Notie that event C(a)i�1 � vi is apart of the event Ra � i (as mentioned above) and this �rst event is the same as C()i�1 � viwhen onditioned on Xa and X respetively. Thus the expression we are looking for isredued to (7.25).(E2') Remark that the event Ra � i oinides with C(a)i�1 > 0. As the event C(a)i�2 � vi�1ontains this last event, we an also write it as C(a)i�2 � vi�1 \ C(a)i�1 > 0. So, we want to�nd E[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1 \ C(a)i�1 > 0℄: (7.29)Some straightforward reasoning based on the de�nition of the expeted value yieldsE[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1 \ C(a)i�1 > 0℄ = E[C(a)i�1 j Xa = k \ C(a)i�2 � vi�1℄=(1� P [C(a)i�1 = 0 j Xa = k \ C(a)i�2 � vi�1℄): (7.30)



102 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISApplying P [A j B\C℄ = P [A\C j B℄=P [C j B℄ we �nd the probability in the denominatorP [C(a)i�1 = 0 j Xa = k \ C(a)i�2 � vi�1℄ = P [C(a)i�1 = 0 \ C(a)i�2 � vi�1 j Xa = k℄P [C(a)i�2 � vi�1 j Xa = k℄ ; (7.31)due to our disussion in (A1') we an substitute the super- and subsripts a for  in bothprobabilities without altering their values. Having done this we use (7.18) and (7.19) forthe omputation of the denominator, while the numerator is obtained based on a similarargument as in (A2')P [C()i�1 = 0 \ C()i�2 � vi�1 j X = k℄ =b k2 Xu=vi�1 2(n�i+2)(k�2u)�C2n�i+22 �uC2i�2u C2i�2�uk�2uC2nk � 2n�i+12n�i+2 � 1�u : (7.32)The expression is the same as in (A2'), but with i � 1 substituted for i � 2 (rememberthat vi = 1 + ui�1).We end with the determination of the expeted value in the right-hand side of (7.30).Again, we an substitute the sub- and supersripts a for . Then, using the de�nition ofthe expeted value we getE[C()i�1 j X = k \ C()i�2 � vi�1℄ =Xl�vi�1E[C()i�1 j X = k \ C()i�2 = l℄ P [C()i�2 = l j X = k℄P [C()i�2 � vi�1 j X = k℄ : (7.33)Finally, we alulate the numerator of this sum using the same methodology as in (7.18)and (7.19), where we de�ne e(i � 1; s; k) as E[2i�1 � C()i�1 j X = k \ C()i�2 = 2i�2 �s℄P [C()i�2 = 2i�2 � s j X = k℄. This results in the following equations (the �rst equationis a onsequene of (7.3)):e(i� 1; 2i�2; k) = 2i�12(n�i+2)kC2i�2kC2nk (7.34)e(i� 1; s; k) = C2i�2s sXl1=0 2(n�i+2)l1  2s+ (2i�1 � 2s)Cmik�l1 + 2n�i+1Cmik�l1�1C2n�s2n�i+2k�l1 !
�Csl1C2n�s2n�i+2k�l1C2nk � 2i�2�sXx=1 Cs+xs e(i� 1; s+ x; k) (7.35)with mi equal to 2n � s2n�i+2 � 2n�i+1.Remark that the expeted number of slots used in this sheme given that we had k on-tenders is independent of the way the slots (polling and ontention slots) are inorporatedinto the frame struture. Only the probability of having k ontenders depends upon theframe struture.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 1037.2.3 Skipping the First Few Levels (STATIC)In this setion we desribe the neessary adaptations to Setion 7.2.2 in order to evaluatethe ISAP sheme when some of the �rst levels of the tree are skipped. The performaneof ISA with a higher starting level is obtained by setting Np equal to 0. The starting levelis denoted by Sl. The following random variables are de�ned:� X+a : the number of partiipants in a CC, this variable ranges from 0 to 2n.� R+a : the level at whih the ISAP sheme is resolved, this variable ranges from Sl ton.� S(a+)i : the number of slots used at level i.� P+a : the level at whih we poll, if the sheme is solved without polling, the variableobtains the value n+ 1.We start with the delay analysis.The Delay AnalysisTo solve this problem we follow the same lines of reasoning as in Setion 7.2.2. In thissetion we address the most signi�ant di�erenes with the evaluation in Setion 7.2.2.Before going into the mathematial details, let us summarize the two major di�erenesregarding the behaviour of the protool. First, the sheme an no longer be solved beforelevel Sl as these levels no longer exist. Seondly, polling at level Sl is no longer possibleas level Sl � 1 is skipped.(A+) Let us start with R+a . Notie that if the sheme was resolved at the �rst level Slthen it is also solved at or before level Sl with the ISA sheme, with a �xed starting levelat 0, and vie versa. Seondly, the events R+a � x and Ra � x oinide if x > Sl. Thuswe have (due to (7.3))P [R+a = Sl j X+a = k℄ = 2(n�Sl)kC2SlkC2nk ; (7.36)P [R+a � Sl + x j X+a = k℄ = P [Ra � Sl + x j Xa = k℄; (7.37)for every value x > 0. This means that the probability of resolving the sheme before orat level Sl might derease a bit, ompared to the situation where the CC starts at level 0.If so, the probability that it is solved at level Sl+1 inreases together with the probabilityof polling at this level. Remark that the probability of solving the sheme at level Sl + 1without polling remains idential. There are no hanges for the other levels. We de�nep+a (k; i) as P [R+a = Sl + i� 1 j X+a = k℄.



104 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISF+a (i; k) is de�ned as the probability that a tagged request is suessful at or beforelevel i. With similar arguments as used for R+a we getF+a (Sl; k) = C2n�2n�Slk�1C2n�1k�1 ; (7.38)F+a (Sl + x; k) = Fa(Sl + x; k); (7.39)for every positive value x. The remainder of the analysis is analogue to the one withstarting level zero.The Throughput AnalysisThe main objetive of this setion is to �nd the expeted number of slots used at eah level.One we have these values, the distribution of X+a allows us to alulate the throughput.This new sheme learly never polls at level Sl (or before sine these levels do not exist),therefore the probability of polling at level Sl + 1 is inreased. This auses the expetednumber of slots during level Sl and Sl + 1 to be di�erent from the ones we had before.All the other expeted values remain the same. The expeted number of slots at level Slmathes 2Sl beause we start at this level.The situation for level Sl + 1 is a bit more ompliated. We start with equation (7.24)(where we add a '+' to all random variables and set i equal to Sl + 1). In view of thedisussion in (A+), adding a '+' only hanges the �rst two values (of the right-hand side)in this expression. Based on the fat that the events at level Sl are similar to those of theISA sheme with the starting level at 0, the produt of these two values is given byP [P+a = Sl + 1 j X+a = k℄E[S(a+)Sl+1 j X+a = k \ P+a = Sl + 1℄ =2n�Sl uSlXi=1 iP [C()Sl = i j X = k℄: (7.40)This onludes the throughput analysis.7.2.4 Skipping the First Few Levels (DYNAMIC)Having done the analysis for the stati starting level it is easy to extend these resultsto the proposed dynami model (see Setion 6.4). We use the same random variables asabove but substitute the '+' sign for a '�' to indiate the dynami nature of the sheme.We also introdue a new random variable B� as the starting level.



7.2. ANALYSIS OF THE BINARY ISAP PROTOCOL 105The Delay AnalysisWe start with the searh for R�a when onditioned on X�a and B�. Assuming that thestarting level equals Sl we have the following (due to the STATIC part):P [R�a = Sl j X�a = k \ B� = Sl℄ = 2(n�Sl)kC2SlkC2nk ; (7.41)P [R�a � Sl + x j X�a = k \ B� = Sl℄ = P [Ra � Sl + x j Xa = k℄; (7.42)with x a positive number. Having found this we de�ne p�a(k; Sl; x+ 1) as P [R�a = Sl + x jX�a = k \ B� = Sl℄. To �nd the joint distribution of (X�a ; B�) it is suÆient to onstrutthe following transition matrix and to determine its steady state vetor:t�a(k;Sb; j;Sa) = P [X(a�)n+1 = j \ B�n+1 = Sa j X(a�)n = k \ B�n = Sb℄ =n+1�SbXt=1 (�t)je��tj! p�a(k; Sb; t)1f(t�Bl^Sa=Sb�1)_(Bl<t<Bm^Sa=Sb)_(t�Bm^Sa=Sb+1)g:Suppose that we observe the system at an arbitrary arrival instane, then the probabilitythat this CC has a length of k frames and started at level Sl is needed. We also need theprobability of having l ontenders and a starting level Sl in the next CC (the CC thatis preeded by the one ontaining the arbitrary arrival). These values are the naturalextensions of (7.5) and (7.6)P [X(a�)next = k \B�next = Sl℄ = P [X�a = k \ B� = Sl℄kE[X�a ℄ (7.43)and P [L(a�)ur = k \ B�ur = Sl℄ = �kE[X�a ℄ 2nXj=1 P [X�a = j \ B� = Sl℄p�a(j; Sl; k): (7.44)Finally, we need to �nd F�a (i; k; Sl), being the probability that a tagged arrival is suessfulat or before level i, knowing that there were k� 1 other partiipants and the CC startedat level Sl. Again, using the results of the previous setion (see STATIC) we obtainF�a (Sl; k; Sl) = C2n�2n�Slk�1C2n�1k�1 ;F�a (Sl + x; k; Sl) = Fa(Sl + x; k):As before we an ombine these results to obtain the average delay of the system. Letus now fous on the delay density funtion. As in (7.10), s is the number of frames thatthe tagged element ompetes, j is the length of the CC (in frames) in whih the taggedrequest was generated and Sb the level at whih this CC started. While l�1 is the numberof other ompetitors next to the tagged request,
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D(x) = bxXs=1 SmaxXSb=Smin n+1Xj=dxe�s 2nXl=1 �1F�a (f(Sb; j) + s� 1; l; f(Sb; j))j �Gj(l) P [L(a�)ur = j \ B�ur = Sb℄; (7.45)where Gj(l) was de�ned in Setion 7.2.1, the funtion f(Sb; j) is given byf(Sb; j) = 8<: max(Smin; Sb � 1) j � BlSb Bl < j < Bmmin(Smax; Sb + 1) j � Bm ; (7.46)and �1F�a(x; y; z) equals F�a (x; y; z)� F�a (x� 1; y; z).The Throughput AnalysisIn the setion above we obtained the joint distribution of (X�a ; B�). This is used to derivethe throughput T �a as follows:T �a = E[X�a ℄P2nk=0PSmaxSl=Smin P [X�a = k \ B� = Sl℄E[Pi S(a�)i j X�a = k \B� = Sl℄ ; (7.47)where the expeted values were obtained in the evaluation of the stati model.7.2.5 Delay and Throughput for Multiple InstanesThe analysis an also be used to evaluate the senario with multiple instanes. This isdue to the fat that the delay experiened by a tagged request only depends upon theevents happening in the instane it belongs to (beause L is not taken into aount).7.3 Analysis of the Q-ary ISAP ProtoolIn this setion we generalize the analysis of the binary sheme to the Q-ary sheme. Thework presented in this setion was published in [65℄. We demonstrate how the delay andthroughput an be alulated for the Q-ary ISAP sheme if Sl = 0. The results for Sl > 0an be obtained from those with Sl = 0. The proedure required to obtain the resultsfor a higher starting level Sl is very similar for both the binary and the Q-ary ase andtherefore all details on this proedure are omitted. Also, results for ISA an be obtainedby setting Np = 0.The following random variables will be used in the sequel of this setion.



7.3. ANALYSIS OF THE Q-ARY ISAP PROTOCOL 107� X, resp. Xa, denotes the number of ontenders or partiipants in a CC for Q-aryISA, resp. ISAP.� R, resp. Ra, denotes the level at whih the CC is resolved (i.e., the number offrames needed minus one) for the Q-ary ISA sheme, resp. ISAP sheme.� C()i and C(a)i , denotes the number of ollisions at level i for both protools. Thesevariables range from 0 to Qi.� Pa denotes the level at whih we poll for the Q-ary ISAP sheme. If the sheme issolved without polling we let Pa be equal to n+ 1.The symbol Cnr is still used to denote the number of di�erent possible ombinations of rfrom n di�erent items.7.3.1 The Delay AnalysisMost of the steps presented below are straightforward generalizations of the binary equa-tions, exept for (A2").(A") We start by studying P [Ra � i j Xa = k℄. Two ases an be onsidered: �rst, theCC might be solved before level i or at level i due to polling, seondly, the CC might besolved at level i without a swith to polling.P [Ra � i j Xa = k℄ = P [Ra � i� 1 [ Pa � i j Xa = k℄+P [Ra = i \ Pa > i j Xa = k℄: (7.48)The �rst probability is disussed in (A1"), the seond in (A2").(A1") We alulate the omplementary probability mass. By de�nition of the pollingmehanism (see Setion 6.3) we haveP [Ra � i \ Pa > i j Xa = k℄ = P [C(a)i�1 > � NpQn�i+1� j Xa = k℄: (7.49)The right-hand side is found using the following relationship:P [C(a)i�1 = � NpQn�i+1�+ x j Xa = k℄ = P [C()i�1 = � NpQn�i+1� + x j X = k℄; (7.50)for x � 1, but not neessarily for x � 0. The following variation on the Inlusion-ExlusionPriniple [29, 73℄ is proposed (where the �rst equality is easily proven by indution on k):s(i; Qi; k) = Q(n�i)kCQikCQnk ; (7.51)s(i; l; k) = CQil lXl1=0Q(n�i)l1C ll1CQn�lQn�ik�l1CQnk � Qi�lXx=1 C l+xl s(i; l + x; k); (7.52)



108 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISwhere s(i; l; k) = P [C()i = Qi � l j X = k℄.(A2") For the binary splitting algorithm this probability is found easily by observingthat eah ollision at level i� 1 involves only two MSs, otherwise it annot be solved atlevel i. Clearly with Q-ary splitting this is no longer the ase. Nevertheless, we still havethe following equality:P [C(a)i�1 = � NpQn�i+1�+ x \ C(a)i = 0 j Xa = k℄ =P [C()i�1 = � NpQn�i+1�+ x \ C()i = 0 j Xa = k℄; (7.53)for x � 1. At level i we an subdivide the address spae in Qi subsets of size Qn�i basedon the �rst i digits of the addresses. Eah of these subsets is de�ned as a virtual slot atlevel i. We state that a virtual slot or subset at level i is ollision free during a CC whenthere is at most one ontender with an address that is part of that subset. Next, de�nep(i; l1; k) as the probability that at level i a spei� set of l1 virtual slots is ollision freeand that at level i+1 all virtual slots are ollision free, given that we had k ontenders inthe CC. Notie that the number of ollisions at level i might be smaller than Qi � l1, soother virtual slots that do not belong to the spei� set of size l1 might also be ollisionfree. Hene,p(i; l1; k) = 1CQnk l1Xj=0 Q(n�i)jC l1j CQi+1�l1Qk�j Q(n�i�1)(k�j): (7.54)Next, de�ne q(i; l1; k) as the probability that level i ontains Qi � l1 ollisions and leveli + 1 is ollision free. Then, we have the following relationship between p(i; l1; k) andq(i; l1; k):q(i; Qi; k) = p(i; Qi; k); (7.55)q(i; l1; k) = CQil1 p(i; l1; k)� Qi�l1Xx=1 C l1+xl1 q(i; l1 + x; k): (7.56)This ompletes (A2").(B") Xa is the steady-state vetor of the Markovian proess (X(a)n )n, where X(a)n denotesthe number of ontenders during the n-th CC. Due to (A"),ta(k; j) def= P [X()n+1 = j j X()n = k℄ = n+1Xt=1 (�t)je��tj! P [Ra = t� 1 j Xa = k℄; (7.57)for 0 � j � Qn � 1. For j = Qn we assign the remaining probability mass. Xa is thenfound by solving the related eigenvetor problem.



7.3. ANALYSIS OF THE Q-ARY ISAP PROTOCOL 109(C") Observing the system at an arbitrary arrival instane On, we require the probabil-ity that the length of the CC, that ontains On, is k frames and that there are l ontendersin the next CC. We denote L(a)ur and X(a)next as the length of the CC ontaining On andthe number of partiipants in the next CC. Some straightforward reasoning shows thefollowing relationship between X(a)next, L(a)ur and Xa:P [X(a)next = l℄ = P [Xa = l℄lE[Xa℄ ; (7.58)and P [L(a)ur = l℄ = �l QnXk=0 P [Xa = k℄P [Ra = l � 1 j Xa = k℄=E[Xa℄: (7.59)(D") De�ne Fa(i; k) as the probability that a tagged request is suessful at or beforelevel i given that we had k ontenders in the CC (for ISAP). Next, de�ne vi = 1+b NpQn�i+1 .We haveFa(i; k) = P [Ra � i� 1[Pa � i j Xa = k℄+Xs�vi P [Rt � i\C()i�1 = s j X = k℄; (7.60)where Rt denotes the level at whih our tagged request is suessful. The �rst probabilitywas found in (A1"). The seond one is alulated using a similar method as in (7.51)and (7.52). We de�ne t(i; s; k) as P [Rt � i \ C()i�1 = Qi�1 � s j X = k℄. Then we get(where the �rst equation is a onsequene of (7.51))t(i; Qi�1; k) = Q(n�i+1)kCQi�1kCQnk (7.61)t(i; s; k) = � Qi�1�sXx=1 Cs+xs t(i; s+ x; k) + CQi�1s sXl1=0Q(n�i+1)l1 �Csl1CQn�sQn�i+1k�l1CQnk  l1k + �1� l1k� CQn�sQn�i+1�Qn�ik�l1�1CQn�sQn�i+1�1k�l1�1 ! : (7.62)With these values it is straightforward to �nd the seond term of expression (7.60).(A",B",C",D") Having done this we an alulate the mean delay. The delay an besplit into two parts. The �rst D1 is the time until the start of the next CC and the seondD2 is the number of frames needed until our tagged request is suessful. Using expression(7.59) and knowing that the arrivals are distributed uniformly within a CC (see Setion7.1), the expeted value for the �rst part equalsE[D1℄ = n+1Xi=1 P [L(a)ur = i℄i=2: (7.63)



110 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISBy de�nition of the expeted value the seond part equalsE[D2℄ = nXi=0 Xk�1 P [X(a)next = k℄(i + 1)(Fa(i; k)� Fa(i� 1; k)); (7.64)where Fa(i; k) was de�ned in (D"). The delay density funtion Da(x) (with x between 1and 2(n+ 1)) is the following:Da(x) = bxXs=1 n+1Xj=dxe�s QnXl=1 Fa(s� 1; l)�Fa(s� 2; l)j Gj(l)P [L(a)ur = j℄: (7.65)where Gj(l); 1 � l � Qn is a probability distribution that is equal to (�j)l�1(l�1)! e��j for l < Qn(the remaining probability mass is assigned to Gj(Qn)). In equation (7.65), s denotes thenumber of transmissions (inluding the suessful transmission) a tagged request needsand j refers to the length (in frames) of the CC in whih our tagged request is generated.Finally, l � 1 equals the number of other ompetitors in the CC apart from our taggedone.7.3.2 The Throughput AnalysisThe throughput analysis for the Q-ary ISAP sheme is very di�erent from the one usedto obtain the throughput of the binary sheme. Although it is possible to use the samemethod as in the binary ase, we opt for a shorter but numerially more sensitive method.The vital part of this method is to alulate the joint probability distribution of thenumber of ollision at level i and level i + 1 for the ISA sheme. These probabilities arealulated in a numerially exat environment (Mathematia).De�ne a new set of random variables S(a)i , where S(a)i is the number of slots required atlevel i when using the ISAP sheme. By de�nition of the throughput Ta we have thatTa = E[Xa℄PQnk=0 P [Xa = k℄E[Pi S(a)i j Xa = k℄ : (7.66)As the probabilities P [Xa = k℄ were obtained during the delay analysis, it is suÆientto �nd E[Pi S(a)i j Xa = k℄. The expeted number of slots used during a CC equals thesum of the expeted number of slots used at eah level, we an fous on E[S(a)i j Xa = k℄.Some preliminary alulations are presented in (E") (in (E"), Np is equal to zero) andin (F") we alulate E[S(a)i j Xa = k℄ using the results of (E").(E") De�ne p(i; l1; l2; k) to be the probability that, at level i, a spei� olletion of l1virtual slots is ollision free and, at level i+1, there are exatly l2 ollision free virtual slotsgiven that we had k ontenders in the CC. The de�nition of a virtual slot was presentedin (A2"). Notie that the number of ollisions at level i might be smaller than Qi � l1;thus, other virtual slots that do not belong to the spei� olletion of size l1 might also



7.3. ANALYSIS OF THE Q-ARY ISAP PROTOCOL 111be ollision free. A reasoning based on the Inlusion-Exlusion Priniple [29, 73℄ allowsus to state the following:p(i; l1; l2; k) = 1CQnk l1Xj=0 Q(n�i)jC l1j CQi+1�Ql1s sXj0=0Q(n�i�1)j0Csj0CQn�l1Qn�i�sQn�i�1k�j�j0� Qi+1�Ql1�sXx=1 Cs+xs p(i; l1; l2 + x; k); (7.67)with s = l2 � Ql1 and with p(i; l1; l2; k) = 0 for l2 < Ql1. Next, we de�ne s(i; l1; l2; k) asthe probability of having exatly l1 ollision free virtual slots, at level i, and exatly l2ollisions free virtual slots, at level i + 1, given that we had k ontenders in the CC. Wehave the following relationship between p(i; l1; l2; k) and s(i; l1; l2; k):s(i; Qi; l2; k) = p(i; Qi; l2; k); (7.68)s(i; l1; l2; k) = CQil1 p(i; l1; l2; k)� Qi�l1Xx=1 C l1+xl1 s(i; l1 + x; l2; k): (7.69)This onludes part (E").(F") Sine the expeted number of slots at level 0 and 1 are straightforward to obtain,we an fous on E[S(a)i j Xa = k℄ for i � 2. We distinguish between the following threeevents E(i)1 ; E(i)2 and E(i)3 :� E(i)1 : the CC is resolved within the �rst i � 2 levels (with or without polling) orpolling takes plae at level i� 1.� E(i)2 : the CC is resolved (without polling) at level i � 1 or polling takes plae atlevel i.� E(i)3 : the CC is not resolved within the �rst i� 1 levels and polling does not ourat level i.Thus, E[S(a)i ℄ = P (E(i)1 )E[S(a)i j E(i)1 ℄ +P (E(i)2 )E[S(a)i j E(i)2 ℄ +P (E(i)3 )E[S(a)i j E(i)3 ℄. Pro-vided that the �rst event E(i)1 ours, the expeted number of slots S(a)i at level i equalszero. As for the other two, we an rewrite the previously mentioned events as: E(i)1 =C()i�2 < vi�1, E(i)2 = Ci�2 � vi�1 \ Ci�1 < vi and E(i)3 = Ci�2 � vi�1 \ Ci�1 � vi (vi wasde�ned in (D")). Moreover,P (E(i)2 j X = k)E[S(a)i j X = k \ E(i)2 ℄ =Xl1�vi�1 Xl2<vi s(i� 2; Qi�2 � l1; Qi�1 � l2; k) Qn�i+1 l2; (7.70)



112 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISand �nallyP (E(i)3 j X = k)E[S(a)i j X = k \ E(i)3 ℄ =Xl1�vi�1 Xl2�vi s(i� 2; Qi�2 � l1; Qi�1 � l2; k) Q l2; (7.71)where s(i; l1; l2; k) was found in (E").7.4 Analysis of the Optional Parameter MpFor the de�nition and use of the parameter Mp we refer to Setion 6.7. As a reminder,the ISAP sheme that uses the Mp parameter is referred to as the M -ISAP sheme. Thefollowing random variables will be used in the sequel of this setion.� X, Xa and ~Xa denote the number of ontenders or partiipants in a CC for theISA, ISAP and M -ISAP sheme.� R, Ra and ~Ra denote the level at whih the CC is resolved (i.e., the number offrames needed minus 1) for ISA, ISAP and M -ISAP.� C()i , C(a)i and ~C(a)i , denote the number of ollisions at level i for eah sheme. Thesevariables range from 0 to Qi.� S()i , S(a)i and ~S(a)i denote the number of ontention slots at level i for eah sheme.� Pa and ~Pa denote the level at whih we poll for the ISAP and M -ISAP sheme. Ifa CC is solved without polling we let Pa and ~Pa be equal to n+ 1.Furthermore, we use the symbol Cnr to denote the number of di�erent possible ombina-tions of r from n di�erent items.7.4.1 Delay and Throughput AnalysisThe inuene of the parameter Mp on the performane an be studied by introduingsome modi�ations to the original analysis of the ISAP as performed in Setions 7.2and 7.3. In this setion we summarize the main modi�ations required. Most of themodi�ations required make use of the following property. Consider the i-th level of a CCwith k ontenders. If i < Mp then both ISA and M -ISAP behave idential (polling is notallowed at these level by de�nition of Mp). For i > Mp we get an idential behavior forISAP and M -ISAP. For i = Mp the M -ISAP sheme behaves di�erently from both theISA and ISAP sheme.



7.5. ANALYSIS OF THE IMPACT OF L 113The following three sets of equations are all due to this property. First, ~Ra when ondi-tioned on ~Xa an be alulated as follows:P [ ~Ra � i j ~Xa = k℄ = P [R � i j X = k℄ i < Mp; (7.72)P [ ~Ra � i j ~Xa = k℄ = P [Ra � i j Xa = k℄ i �Mp: (7.73)Seond, de�ne F(i; k);Fa(i; k) and ~Fa(i; k) as the probability that a tagged station issuessful after at most i + 1 transmissions provided that the CC had k ontenders foreah of the shemes. Then,~Fa(i; k) = F(i; k) i < Mp; (7.74)~Fa(i; k) = Fa(i; k) i �Mp: (7.75)Finally, we also haveE[ ~S(a)i j ~Xa = k℄ = E[S()i j X = k℄ i < Mp; (7.76)E[ ~S(a)i j ~Xa = k℄ = E[S(a)i j Xa = k℄ i > Mp: (7.77)The �rst two modi�ations are suÆient to alulate the average delay and the delaydensity funtion for the M -ISAP sheme. As for the throughput, we still need to obtainE[ ~S(a)Mp j ~Xa = k℄. Consider a CC with k ontenders, we mentioned that the M -ISAPsheme behaves idential to ISA until level Mp � 1. Therefore,E[ ~S(a)Mp j ~Xa = k℄ = Xj�bNp=Qn�Mp+1P [C()Mp�1 = j j X = k℄ Qn�Mp+1 j +Xj>bNp=Qn�Mp+1P [C()Mp�1 = j j X = k℄ Q j: (7.78)An algorithm based on the Inlusion-Exlusion Priniple [29, 73℄ to alulate P [C()i = j jX = k℄ was provided in the previous setions.7.5 Analysis of the Impat of LIn the previous two setions we alulated the delay distribution and the throughput of theISAP sheme where L, the maximum number of ontention slots allowed in a single frame,was not taken into aount. In this setion we fous on the parameter L. Unfortunately,it seems like there is no (apparent) pratial way to alulate the throughput and delaydistribution of ISAP when L is taken into aount. Theoretially it is not too diÆult todesign an algorithm that alulates the throughput and delay of ISAP. However, the timeand spae omplexity of the algorithm is too large. Also, the alulations are numeriallysensitive and have to be onduted in a numerially exat environment (using rationalalulations).



114 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISThe main bottlenek is to obtain the probability that a CC requires i+1 frames (providedwe have k partiipants). In the previous two setions these probabilities were loselyrelated with P [Ra = i j Xa = k℄, but this is no longer the ase if a level requires multipleframes. It is however possible, by extending the method we used to obtain the jointdistribution of the number of ollisions at level i and i+1 (see Setion 7.3.2), to set up analgorithm that alulates the joint distribution of the number of ollisions (of ISA) at level0; 1; : : : ; n, from whih it is easy to obtain the above-mentioned probabilities. However, theamount of memory required to store this joint distribution is huge: Qn(n+1)=2 probabilitieshave to be stored. Therefore, for realisti values of n, this algorithm is out of reah of theurrent omputer generations, but might beome realisti in 10 years time ,.Instead of waiting for another 10 years, we an however alulate some measures, i.e.,expeted values, that are losely related to the delay and the throughput of ISAP. Thesemeasures provide insight on the interation between the parameter L and the other pro-tool parameters: Np and Sl. We restrit ourselves to the binary ase Q = 2. The sametehnique an also be used for Q > 2. This work was published in [67℄7.5.1 Delay and Throughput MeasuresAs a reminder, let us summarize the following important protool parameters:� n : the length of the MAC addresses (in bits).� L : the maximum number of ontention slots allowed in one frame.� Np : the value that triggers the polling mehanism.� Sl : the starting level.In this setion we alulate the following expeted values:� E[F j X = k℄: the expeted length of a CC (expressed in frames) with k � 2partiipants.� E[S j X = k℄: the expeted number of ontention slots that a CC with k � 2partiipants requires.The value E[F ℄ is strongly related with the delay experiened by the protool, whereasE[S℄ is related with the throughput of the protool. Also, notie that E[S j X = k℄ doesnot depend upon the value of L. Moreover, in the speial ase of L = 1 both expetedvalues (E[F ℄ and E[S℄) are idential. Therefore, it is suÆient to set up a sheme toalulate E[F j X = k℄ for any value of L.The �rst step of the alulation is idential to (E") (see Setion 7.3.2), where we alulatethe probabilities s(i; l1; l2; k) of having l1 ollision free virtual slots at level i and l2 ollisionfree virtual slots at level i+1 provided that we had k ontenders in the CC. See (A2") in



7.5. ANALYSIS OF THE IMPACT OF L 115Setion 7.3.1 for the de�nition of a virtual slot. The remainder of the analysis is dividedinto two parts: in the �rst part Np � 0 and Sl = 0, while in the seond ase Np � 0 andSl � 0.Part 1: 0 � Np < 2n and Sl = 0De�ne the random variable F as the number of frames required to support a CC and therandom variable Fi as the number of frames required to support level i of the tree, thenE[F j X = k℄ = nXi=0 E[Fi j X = k℄: (7.79)For k � 2 and Np < 2n, we have F0 = 1 and F1 = 1, resp. 2, if L � 2, resp. L = 1.Therefore, we an fous on E[Fi j X = k℄ with i � 2. We separate the following threeevents E(i)1 ; E(i)2 and E(i)3 :� E(i)1 : the CC is resolved within the �rst i � 2 levels (with or without polling) orpolling takes plae at level i� 1.� E(i)2 : the CC is resolved (without polling) at level i � 1 or polling takes plae atlevel i.� E(i)3 : the CC is not resolved within the �rst i� 1 levels and polling does not ourat level i.Thus, E[Fi℄ = P (E(i)1 )E[Fi j E(i)1 ℄ +P (E(i)2 )E[Fi j E(i)2 ℄ +P (E(i)3 )E[Fi j E(i)3 ℄. Given thatthe �rst event E(i)1 ours, the expeted number of frames Fi at level i equals zero. Thetwo other expressions are found as follows.De�ne Ci as the number of ollisions at level i. Suppose that Ci = N, then the sizeof the remaining address spae is N2n�i. Thus, at level i + 1 we have no polling whenN > Np=2n�i. Also, having N > Np=2n�i is equivalent to having N > bNp=2n�i for Nan integer value. Hene, polling does not our at level i + 1 if Ci � 1 + bNp=2n�i. Wedenote 1 + bNp=2n�i as i. Hene, we an rewrite the previously mentioned events as:E(i)1 = Ci�2 < i�2, E(i)2 = Ci�2 � i�2 \Ci�1 < i�1 and E(i)3 = Ci�2 � i�1 \Ci�1 � i�1.We already mentioned that E[Fi j X = k \ E(i)1 ℄ is zero. Also,P (E(i)2 j X = k)E[Fi j X = k \ E(i)2 ℄ =Xl1�i�2 Xl2<i�1 s(i� 2; 2i�2 � l1; 2i�1 � l2; k)�2n�i+1l2L � ; (7.80)and �nallyP (E(i)3 j X = k)E[Fi j X = k \ E(i)3 ℄ =Xl1�i�2 Xl2�i�1 s(i� 2; 2i�2 � l1; 2i�1 � l2; k)�2l2L � ; (7.81)



116 CHAPTER 7. THE ISAP ALGORITHM: ANALYSISwhere s(i; l1; l2; k) was found in (E") (see Setion 7.3.2).Part 2: 0 � Np < 2n and Sl � 0To avoid any onfusion with the previous we de�ne Fi(Sl) as the number of frames requiredto support level i knowing that the starting level is Sl. Clearly, for x < Sl and y > Sl + 1E[Fx(Sl) j X = k℄ = 0; (7.82)E[FSl(Sl) j X = k℄ = �2SlL � ; (7.83)E[Fy(Sl) j X = k℄ = E[Fy(0) j X = k℄; (7.84)where E[Fi(0) j X = k℄ was found in part 1. Thus, only the expeted number of framesto support level Sl + 1 remains to be determined. We separate three events:� E1(Sl): the CC is solved at level Sl.� E2(Sl): polling ours at level Sl + 1.� E3(Sl): the CC is not solved at level Sl nor does polling our at level Sl + 1.Making use of the values i de�ned in Part 1, we an rewrite these events as CSl = 0,CSl > 0 \ CSl < Sl and CSl � Sl. Hene,E[FSl+1(Sl) j X = k℄ =Xl1 0�Xl2<Sl s(Sl � 1; l1; 2Sl � l2; k)�2n�Sll2L � + Xl2�Sl s(Sl � 1; l1; 2Sl � l2; k)�2l2L �1A ;for Sl > 0. The results for Sl = 0 were obtained in Part 1 of the analysis.



Chapter 8Results for the Identi�er SplittingAlgorithm ombined with Polling
This hapter investigates the inuene of the di�erent ISAP protool parameters. Ourmain objetive is to obtain a well-founded understanding of the impat of the di�erentprotool parameters on the delay and throughput harateristis and to reveal possibledelay vs. throughput tradeo�s. Petras, et al [50{52℄ have alulated the �rst two momentsof the length of an ISA CC, with k ontenders. From these values they estimated themean delay and throughput of ISA by assuming that a station generates a new arrivalduring a CC with probability p. Thus, the number of arrivals ourring during a CCobeys a binomial distribution and is independent of the length of a CC. This assumedindependene results in mean delay and throughput results that are (far) too optimisti.This hapter is subdivided into �ve setions. Setion 8.1 presents some numerial examplesfor the binary ISAP sheme. In Setion 8.2 we investigate the impat of the splitting fatorQ. Setion 8.3 demonstrates the inuene of the optional parameterMp, while Setion 8.4fousses on the parameter L. Finally, in Setion 8.5, we summarize the main onlusions.8.1 Results for the Binary ISAP ShemeIn this setion we use the analytial model, presented in Setion 7.2, to investigate theimpat of the arrival rate �, the trigger value Np and the starting level Sl on the meandelay, the delay density funtion and the throughput for the binary ISAP sheme. Thesystem parameters are set as follows. The number of mobiles is 128; that is, n = 7. Thearrival rate � (requests per frame) varies between 0:05 and 3:5. The values studied forthe polling threshold Np are 0, 20 and 40, where the �rst ase orresponds with the ISAsheme. The starting level Sl will vary from level 0 to 2. When studying a system with adynami starting level, Bl and Bm are set to 1 and 4 respetively. Therefore, the startinglevel is dereased by one if the CC is solved in 1 frame and is inreased by one if theCC onsist of 4 or more frames. The boundary values are set as follows: Smin = 0 andSmax = 2. The number of instanes varies between 1 and 4.



118 CHAPTER 8. THE ISAP ALGORITHM: RESULTSWe study four di�erent senarios. First, we investigate the impat of the polling thresholdNp, when the starting level Sl is �xed at 0. Next, the inuene of the starting level Sl isdisussed. Then, the impat of using a variable starting level is onsidered. Finally, welook at the e�et of using multiple instanes of ISA. Additional numerial results an befound in [72℄.8.1.1 The Inuene of the Polling Threshold on the System Per-formaneFigures 8.1 and 8.2 show the inuene swithing to polling has on the mean delay andthe throughput. As expeted we get a tradeo� between the delay and throughput har-ateristis: the sooner the ISAP protool swithes to polling, the shorter the mean delay,but the lower the throughput.
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Figure 8.2: The impat of polling on thethroughputFrom Figures 8.1 and 8.2 we observe that the protool behaves very similar for di�erentNp values when the arrival rate � is small (below 0:25). A similar result is obtained forlarge values of � (beyond 5). Both these results are intuitively lear. Polling is not anissue in these ases: for � very small, ollisions rarely our and are solved before pollingan be onsidered; if � is very large, the remaining size of the address spae is too largeto swith to polling.Let us now onsider moderate values for �. Reall that for a polling threshold Np = 40,resp. Np = 20, the protool will never start polling until level 3, resp. level 4 (a singleollision at level i orresponds to a remaining address spae of 27�i). Thus, the impat ofNp on the performane measures is low for small values of �. If the arrival rate inreases(look at the range 0:5 till 1), the probability that ollisions at level 2, resp. 3 are introduedinreases. In most ases these ollisions ontain very few partiipants; that is, oasionally32, resp. 16, polling slots are provided at level 3, resp. 4, to poll very few ompetitors.Therefore, the throughput dereases with inreasing values of Np. If � is inreased evenmore, beyond one, polling is postponed in most ases to a later level (as the expeted



8.1. RESULTS FOR THE BINARY ISAP SCHEME 119number of ollisions at level 2, resp. 3, beomes larger than 1) and will ontain morepartiipants. This results in higher throughput values for a �xed value of Np.
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8.2. RESULTS FOR THE Q-ARY ISAP SCHEME 1218.1.4 The inuene of Multiple Instanes of ISA on the SystemPerformaneThe analysis presented in Setion 7.2 an be applied in order to evaluate the inuene ofmultiple instanes. In this �nal senario � varies between 0 and 6. Figures 8.9 and 8.10show the delay and throughput results for three on�gurations. In the �rst, we have oneinstane and the starting level Sl is �xed at 2. In the seond, we have two instanes, withSl = 1. Finally, we have four instanes, with Sl = 0.
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122 CHAPTER 8. THE ISAP ALGORITHM: RESULTSin a CC is always muh smaller than Qn.8.2.1 The Inuene of the Splitting Fator and the Polling Thresh-old on the System PerformaneIn Figures 8.11 and 8.12, the inuene of Q on the mean delay and the delay densityfuntion is shown for Np = 0 and Np = 20. First, a larger splitting fator Q results in asmaller delay (mean and quantiles). Also, the delay di�ers muh more when we omparethe binary and ternary sheme as opposed to the ternary and quaternary sheme. Ingeneral, a larger value for Q results in a smaller delay. Also, the delay improvement weget from inreasing Q by one dereases as Q grows. Indeed, inreasing Q by one resultsin 1=Q times as many slots to resolve a ollision.
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Figure 8.14: The impat of Q on thethroughput results for Np = 208.2.2 The Interation between the Splitting Fator and the Start-ing LevelWe only show results for Sl = 0 and Sl = 1, although the analytial model imposesno restraints on the value of the starting level Sl (expet that QSl is bounded by L).Figures 8.15 and 8.16 show the inuene of the starting level Sl and its interation withQ for Np = 0. First, the absolute delay improvement that we obtain for Sl = 1 isvery similar in all three ases (binary, ternary and quaternary). In general, the absolutedelay improvement that we obtain from a higher starting level is, to a ertain extent,independent of the splitting fator Q.
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124 CHAPTER 8. THE ISAP ALGORITHM: RESULTSto make the starting level Sl dynami between Smin and Smax, with Smin = 0 or 1 (seeSetion 6.4 for the details).8.3 Results for the M-ISAP ShemeIn this setion we study the impat of the optional Mp parameter on the delay andthroughput, by making use of the analytial model presented in Setion 7.4. We restritourselves to the following senario: Q = 2, n = 8 and Np = 32. The optional Mpparameter is varied from 0 to 8. Notie, the behavior of M -ISAP and ISAP is identialif Mp � 4 (in general: Mp � n � blogQNp + 1) and the behavior M -ISAP and ISA isidential if Mp = 8 (in general: Mp = n).
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N = 256 (Q = 2, n = 8), Np = 32, Sl = 0Figure 8.18: The impat of Mp on thethroughputFigures 8.17 and 8.18 demonstrate the usefulness of the Mp parameter: inreasing Mp re-dues the throughput losses aused by the polling feature, but inreases the mean waitingtime. The interesting part about Mp is that the throughput gains, for Mp = 5 and 6 (ingeneral: Mp = f(Np)+1 and f(Np)+2, where f(Np) = n�blogQNp+1), are muh moresigni�ant than the delay losses. For instane, for � = 0:75 we get an 8% throughput gainwhen inreasing Mp from 4 to 5, while the mean delay inrement is pratially zero.8.4 The Inuene of L on ISAPIn this setion we investigate the inuene of the L parameter, i.e., the maximum numberof ontention slots allowed in one frame (see Setion 6.1). The results presented wereobtained using the pakage Mathematia and are therefore exat. As indiated in Setion7.5, we restrit ourselves to the binary ase, although the analytial model an easilybe generalized to apture splitting fators Q > 2. We onsider MAC addresses withn = 7 bits, although n = 8 � 10 bits might be somewhat more realisti. The number



8.4. THE INFLUENCE OF L ON ISAP 125of partiipants (MSs) in the CC therefore varies from k = 2 to 128 (sometimes we onlyshow the results for k � 60 beause no signi�ant di�erenes were observed for k � 60).The number of ontention slots allowed in one frame equals L = 4s, with 4 � s � 16 orL = 128. The trigger value Np is also a multiple of 4 between 16 and 64.
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Figure 8.19: The interation between L and Np with L = 488.4.1 Tuning the Trigger Value NpIn this setion we fous on the interation between the polling threshold Np and the Lparameter. Figure 8.19 (L = 48) shows that the expeted length of the CC (in frames)dereases as Np inreases for Np � 48. Indeed as long as Np � L polling only lastsone frame and therefore it always results in a delay improvement. More surprisingly, allthe urves are almost idential when Np = 48; 52; 56 and 60. To understand this let usompare the ases Np = 48 and Np = 52. Both these ases behave idential exept when,at some level i < 6, the size of the remaining address spae Y is larger than 48, butsmaller than (or equal to) 52. In suh a ase we swith to polling if Np = 52, namely, Yontention slots are inluded in the next two frames. Thus, the remaining length of theCC is two frames. When Np = 48 it is very likely that the remaining length of the CCis also two frames. Indeed, the �rst frame to ome ontains level i + 1 of the tree (onlyone frame is required to support level i + 1 as L = 48 and i < 6) and the seond frameto ome is most likely used to poll the remaining ontenders after level i + 1 (as it ishighly probable that the size of the remaining address spae will drop below 48). Finally,inreasing Np even more (Np = 64) results in a somewhat larger delay for small values ofk. Therefore, hoosing Np > L might not be that useful.Figure 8.20 shows the results for L = 16. It on�rms that there is no use in hoosing apolling threshold Np > L when we look at the expeted delay. Moreover, the di�erenebetween two values of Np is only signi�ant if there is a multiple of L in between.
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Figure 8.20: The interation between L and Np with L = 16In general, with respet to the expeted delay of the sheme, we onlude that the optimalhoie for Np is L. There is one exeption to this rule: setting Np = 2n with n small,e.g., n < 8, might result in a better delay: espeially if k beomes large|that is, if theontention hannel is highly loaded. For example, in a system with Np = 128 and L = 16(as shown in Figure 8.20) the length of the CC would be �xed and equal to 8 frames. Themain disadvantage of hoosing Np = 2n is the low throughput that is obtained, leavingless slots available for ontention free transmissions (see Setion 6.1).
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8.4. THE INFLUENCE OF L ON ISAP 127always inreases when Np inreases. Moreover, as Np approahes zero, E[S j X = k℄approahes (dereases to) a linear urve for k large. Combining Figures 8.19, 8.20 and8.21 we may onlude that Np should always be hosen smaller than or equal to L. Theloser we hoose Np to L the better the mean delay but the worse the throughput beomes.8.4.2 The Inuene of the Parameter LIn this setion we investigate the inuene of the maximum number of ontention slots Lallowed in one frame on the delay and throughput measures de�ned in Setion 7.5. Figure8.22 shows E[F ℄ for di�erent values of L � Np = 16. A number of onlusions an bedrawn from this �gure. Clearly, the less ontention slots we allow in one frame the largerthe delay beomes. Moreover, the delay improvements that we get when we inrease Lare the most signi�ant if there is a power of 2 in between. In Setion 8.4.1 we saw thatdi�erent hoies for Np (� L) only resulted in a signi�ant di�erene if there is a multipleof L in between. Beause Np = 16, a small power of two, it is tempting to believe thatthe di�erene between two hoies of L is the most signi�ant if there is a multiple ofNp in between. Numerial experiments have shown that this is generally not the ase.Moreover, even if there is no power of two in between di�erent hoies of L, we still geta relevant impat on the mean delay.
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Figure 8.23: E[F ℄ for di�erent values of Linlude Figure 8.23 for reasons of ompleteness. The main purpose of Figure 8.23 is todemonstrate that di�erent values L1 and L2 do not oinide for k smaller than min(L1; L2)when Np > min(L1; L2).8.4.3 Seleting the Starting Level SlIn this setion we investigate the interation between the starting level Sl and the Lparameter. In Figure 8.24 the inuene of the starting level Sl on E[F ℄ is shown (L = 16
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8.4. THE INFLUENCE OF L ON ISAP 129and Np = 0). For Sl � 4 the delay dereases for all values of k when inreasing thestarting level Sl. Moreover, the improvement that we get by inreasing Sl by one is loseto one frame. For Sl > 4 we still have a delay improvement for large values of k (a moresigni�ant one ompared to Sl � 4), but a prie is paid for smaller values of k. Note thatfor Sl = 7 we obtain a pure polling sheme. In general, looking from the delay perspetive,we get the best results with Sl = log2(L) if the ontention hannel has a low to mediumload. For high loads a larger value for Sl might be onsidered.
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Figure 8.26: Stability points for Poissonian input traÆstability point might split into two hardly separated stability points (this is due to theosillations in the E[F ℄ urves). Nevertheless, these split stability points are not expetedto endanger the general stability of the protool. Comparing the results for Np = 16 andNp = 32, we see that the stability point of the protool remains the same for � � 5, asopposed to � < 5 where we get a smaller stability point for Np = 32. Thus, the delayimprovement that we get by inreasing Np(� L) is the most signi�ant for systems withlow to medium loads.In onlusion, it should be lear that the introdution of L does not a�et the stabilityof the protool, though numerial experiments did show that the stability points mightshift somewhat to the right when we derease L in systems with a high load.8.5 ConlusionsIn this setion we summarize the main onlusions drawn from the numerial examplespresented in Setions 8.1 to 8.4. We disuss one parameter at a time starting with L,followed by Q, Np, Mp and Sl. Although we restrited ourselves to Q = 2, when studyingthe impat of L, we intuitively generalize these onlusions to the Q-ary ase.The impat of L, the maximum number of ontention slots allowed in a single frame, anbe summarized as follows:� Obviously, inrementing L redues the delay su�ered by a request.� An inrement of L from l1 to l2 is the most signi�ant if one or more powers of Qare loated within the interval ℄l1; l2℄. Although, other inrements are also useful.



8.5. CONCLUSIONS 131� Under low or medium load onditions the inuene of L is minor when hosen largeenough.As for the splitting fator Q, we have:� Inreasing the splitting fator Q results in smaller delays (mean and quantiles).� From the throughput perspetive we obtain, for most senarios, the best results forthe ternary sheme.� A ternary sheme should be preferred above a binary one. The hoie between theternary and the quaternary is a tradeo� between the delay and throughput.The inuene of the polling threshold, Np, an be summarized as follows:� The polling threshold Np should not be hosen larger than L, the maximum numberof ontention slots allowed in one frame.� When seleting an appropriate value for Np a tradeo� has to be made between thedelay and throughput harateristis where a better delay is obtained for largervalues of Np (� L).� Swithing to polling has a more signi�ant impat for smaller splitting fators Q.The delay improvements for Q > 3 do not seem to pay o� against the omplexityintrodued by the polling mehanism. Therefore, one should not implement it forQ > 3.As for the optional Mp parameter:� The optional Mp parameter, to be used in ombination with Np, is useful to makethe delay vs. throughput tradeo�, when seleting Np, more attrative.A �xed or variable starting level Sl has the following inuene:� If the load of the ontention hannel is low (or medium) the starting level Sl shouldnot be hosen larger than logQ(L). For Sl � logQ(L) we get a similar tradeo� aswith the polling threshold Np, i.e., the larger Sl the better the delay and the worsethe throughput beomes.� For highly loaded systems it might still be useful to selet Sl > logQ(L) as thismight result in better delay and throughput harateristis.� A higher starting level does however result in a serious throughput degradation ifthe hannel is poorly loaded. This throughput loss an be avoided by making thestarting level variable (see Setion 6.4).Finally, we also indiated that the ISAP protool often has a single stability point andshould operate around this point for the majority of time. Further optimizations an bemade by implementing multiple instanes of ISA.





Conlusion
This thesis fouses on the performane evaluation of a family of algorithms used to solvethe so-alled multiple aess problem that ours in ommuniation networks whenevermultiple sending and reeiving nodes are all onneted to the same, single, shared link.Protools, or algorithms, designed to solve this problem are known as multiple aess pro-tools. Within this thesis we have analyzed the performane of a spei� lass of multipleaess protools ommonly known as tree algorithms and this both from a theoretial anda more pratial point of view. The thesis is subdivided into two parts.The �rst analyzes the maximum stable throughput of tree algorithms, often referred to astheir eÆieny, under a number of idealized onditions. These onditions are used as thestandard model of a multiple aess link within the IEEE Information Theory Soiety [8℄;hene, the multiple aess problem is viewed from a theoretial perspetive. The maindi�erene with all prior work is that we have signi�antly relaxed the assumptions madeon the arrival proess|an arrival proess is a stohasti proess that spei�es how newpakets are generated by the users (senders) onneted to the shared link. Instead ofPoisson arrivals we onsider a rih lass of tratable Markovian arrival proesses, whihlend themselves very well to modeling bursty arrival proesses arising in omputer andommuniation networks|namely, we onsider disrete time bath Markovian arrival pro-esses (D-BMAPs). Tree algorithms an be further ategorized into three sublasses: thebloked aess, free aess and grouped aess lass. The methods used to analyze the�rst sublass|see Chapter 2|are fairly ommon and originated in the early 1980s [41℄.To a ertain extent the same an be said about the grouped aess lass (although someompliations do arise, see Chapter 5). The free aess lass is by far the most diÆultto analyze (given the urrent state of the art results) and requested a very di�erent andnew approah, Chapters 3 and 4 are devoted to them. The key result is to view a treealgorithm with free aess as a tree strutured quasi-birth-death (QBD) Markov hain,the theory of whih was developed during the late 1990s, and to study the stability of thealgorithm by means of the reurrene of the Markov hain. The main onlusion drawnfrom the �rst part of the thesis is that the good stability harateristis of tree algorithmsunder Poisson arrivals are maintained under this rih lass of arrival proesses, therebyfurther extending the established theoretial foundation of tree algorithms. More detailedonlusions and key results are found at the end of eah hapter.In the seond part of the thesis, we study tree algorithms from a more pratial per-spetive. Many aess systems|for instane, wireless broadband systems, hybrid �beroaxial (HFC) networks or passive optial networks (PONs)|have a point-to-multipoint



134 CONCLUSIONarhiteture. The single end point, referred to as the aess point (AP), operates as aentralized ontroller, that is, it deides whih of the end nodes gets to transmit a paketto the AP. To make this deision, end nodes need to delare their bandwidth require-ments to the aess point (AP). This information is then used by the AP to shedule alluplink transmissions, that is, transmissions from an end node to the AP, aording to thetraÆ harateristis and the quality of servie (QoS) agreed upon. A problem of entralimportane is how the end nodes inform the AP about their bandwidth needs, a prob-lem that has reeived onsiderable attention of the IEEE Communiation Soiety. In theseond part of this thesis, we address this problem in the ontext of wireless broadbandaess networks and we provide a detailed analysis of the Identi�er Splitting Algorithmombined with Polling (ISAP) |see Chapter 6. The Identi�er Splitting Algorithm is atree algorithm that was introdued during the European RACE projet 2067 on MobileBroadband Systems (MBS). We have enhaned this algorithm with a polling mehanismand studied the inuene of its parameters on the delay and throughput harateristisby means of several analytial models. These models, presented in Chapter 7, ombineelementary probability theory, queueing theory, ombinatoris and the theory of Markovhains. A summary of the main onlusions drawn from the numerial results, presentedin Chapter 8, is given in Setion 8.5.



Nederlandse Samenvatting
Deze thesis handelt over de performantie evaluatie van een verzameling algoritmen diegebruikt worden om het zogenaamde \multiple aess" probleem|dat optreedt in om-muniatie netwerken telkemale meerdere zendende en ontvangende gebruikers gebruikmaken van �e�enzelfde, gezamelijke ommuniatie link|op te lossen. Algoritmen, of pro-tools, die ontworpen zijn om aan dit probleem een antwoord te bieden, zijn gekend als\multiple aess" algoritmen. Binnen het kader van deze thesis wordt de performantievan een welbepaalde klasse van multiple aess algoritmen, genaamd tree algoritmen,ge�evalueerd. Deze evaluatie gebeurt zowel vanuit een theoretish oogpunt, alsook vanuiteen meer praktishe invalshoek. Vandaar dat de thesis ook is opgesplits in twee delen.In het eerste deel wordt de maximale stabiele throughput, d.w.z., de maximale verwerk-ingsapaiteit of eÆi�entie, bestudeerd, en dit onder een aantal ge��dealizeerde ondities.Deze ondities worden, door de IEEE Information Theory Soiety, veelal gehanteerd alshet standaard model voor multiple aess ommuniatie links. Gegeven de ideologie diedeze organizatie hanteert, kunnen we stellen dat het probleem bekeken wordt vanuiteen meer theoretish oogpunt. Het grote vershil met al het voorgaande werk bestaaterin dat we de veronderstellingen gemaakt op het aankomstenproes|het aankomsten-proes is een stohastish proes dat aangeeft wanneer de gebruikers nieuwe pakkettenaanmaken|sterk versoepeld hebben. In plaats van Poisson aankomsten te veronder-stellen, beshouwen we een erg rijke klasse van aankomstenproessen, die uiterst geshiktis voor het modeleren van de meer onregelmatige aankomstpatronen die we terug vin-den in moderne ommuniatie netwerken| namelijk, disrete tijds bath Markoviaanseaankomstenproessen (D-BMAPs).De beshouwde algoritmen, d.w.z. de tree algoritmen, kunnen verder ingedeeld worden indrie ategorie�en. De ategorie waartoe een bepaald algoritme behoort, hangt af van destrategie dat het hanteert om nieuwe aankomsten in het shema te betrekken. Zo zijn eralgoritmen met geblokkeerde, vrije en gegroepeerde toegang. De methode die gehanteerdwerd voor de evaluatie van de eerste ategorie van algoritmen|dat is, deze met geblok-keerde toegang, zie Hoofdstuk 2|is vrij gebruikelijk en werd reeds in het begin van dejaren tahtig ontwikkeld [41℄. Tot op zeker hoogte kan hetzelfde gezegd worden omtrent dealgoritmen met gegroepeerde aess, zij het dat er toh een aantal ompliaties optreden,zie Hoofdstuk 5. De ategorie met de vrije toegang is veruit de moeilijkste om te evalueren,gegeven de huidige stand van zaken, vandaar dat deze ook vroeg om een geheel nieuwebenadering. Hoofdstuk 3 en 4 zijn hieraan gewijd. Het belangrijkste resultaat bestaaterin om deze algoritmen te zien als een boomgestrutureerde QBD (\Quasi-Birth-Death")



136 NEDERLANDSE SAMENVATTINGMarkov keten, een theorie die zelf pas op het einde van de jaren negentig ontwikkeld is.De hoofdonlusie van het eerste deel van de thesis is dat de goede stabiliteitskenmerken,in het geval van Poisson aankomsten, bewaard blijven wanneer we D-BMAP aankomstenbeshouwen. Dit resultaat draagt dus erg bij tot de verdere theoretishe onderbouw vantree algoritmen als oplossing voor het multiple aess probleem. De overige onlusiesworden samengevat op het einde van elk hoofdstuk.In het tweede deel van de thesis worden de tree algoritmen vanuit een meer praktis-he invalshoek bekeken. Vele aess netwerken|bijvoorbeeld, draadloze netwerken, HFC(\Hybrid Fiber Coaxial") netwerken en PON (\Passive Optial Networks") netwerken|hebben een geentralizeerde arhitetuur. Conreet betekent dit dat al het verkeer van ofnaar het netwerk loopt via een enkel knooppunt, dat we het aess punt (AP) noemen.Het AP bepaalt ook, en dit op elk ogenblik, welke eindgebruiker informatie mag versturennaar het AP (en dus naar het netwerk toe). Om deze beslissing te kunnen nemen, moetelk van de eindgebruikers zijn huidige behoefte aan bandbreedte kenbaar maken aan hetAP. Het AP zal dan een beslissing maken op basis van de verkregen informatie en dit inovereenkomst met het ontrat dat bestaat tussen de eindgebruiker en de servie provider(die eigenaar is van de netwerk infrastrutuur). Een belangrijke vraag hierbij is: Hoe kaneen eindgebruiker zijn huidige behoefte aan bandbreedte kenbaar maken aan het AP ? Ditprobleem heeft al heel wat aandaht gekregen van de IEEE Communiation Soiety. Inhet tweede deel van deze thesis bekijken we dit probleem in het liht van draadloze breed-band aess netwerken en maken we een uitgebreidde analyse van het Identi�er SplittingAlgoritme in ombinatie met Polling (ISAP)|zie Hoofdstuk 6.Het Identi�er Splitting Algoritme is een tree algoritme dat voor het eerste ge��ntrodueerdwerd tijdens het Europeese RACE 2067 projet dat handelt over mobiele breedband syste-men (MBS). In het kader van deze thesis hebben we dit algoritme verrijkt met een pollingmehanisme en hebben we vervolgens, op basis van een aantal analytishe modellen, deinvloed op de performantie|dat is, de wahttijd en de eÆi�entie|van de vershillendeparameters van het algoritme bestudeerd. Deze analytishe modellen worden voorgesteldin Hoofdstuk 7 en maken gebruik van elementaire kanstheorie, queueing theorie, ombina-toriek en Markov ketens. Een samenvatting van de belangrijkste onlusies wordt gegevenop het einde van Hoofdstuk 8.
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