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Abstract. In data mining association rules are very popular. Most of
the algorithms in the literature for finding association rules start by
searching for frequent itemsets. The itemset mining algorithms typically
interleave brute force counting of frequencies with a meta-phase for prun-
ing parts of the search space. The knowledge acquired in the counting
phases can be represented by frequent set expressions. A frequent set ex-
pression is a pair containing an itemset and a frequency indicating that
the frequency of that itemset is greater than or equal to the given fre-
quency. A system of frequent sets is a collection of such expressions. We
give an axiomatization for these systems. This axiomatization character-
izes complete systems. A system is complete when it explicitly contains
all information that it logically implies. Every system of frequent sets
has a unique completion. The completion of a system actually represents
the knowledge that maximally can be derived in the meta-phase.

1 Introduction

Association rules are one of the most studied topics in data mining. They have
many applications [1]. Since their introduction, many algorithms have been pro-
posed to find association rules [1][2][8].

We start with a formal definition of the association rule mining problem as
stated in [1]: Let Z = {I1, L5, ..., I, } be a set of symbols, called items. Let D
be a set of transactions, where each transaction T is a set of items, 7' C 7, and
a unique transaction ID. We say that a transaction T contains X, a set of some
items in Z, if X C T. The fraction of transactions containing X is called the
frequency of X. An association rule is an implication of the form X = Y, where
X CZI,Y CZT,and X NY = ¢. The rule holds in the transaction set D with
confidence c if the fraction of the transactions containing X, that also contain
Y is at least ¢. The rule X = Y has support s in the transaction set D if the
fraction of the transactions in D that contain X UY is at least s.

Most algorithms start with searching itemsets that are contained in at least
a fraction s of the transactions. To optimize the search for frequent itemsets, the
algorithms use the following monotonicity principle:
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if X CY, then the frequency of X will never be smaller than the fre-
quency of Y.

This information is then used to prune parts of the search space a priori. To
exploit this monotonicity as much as possible, the apriori-algorithm [2] starts
by counting the single itemsets. In the second step, only itemsets {i1,i2} are
counted where {i1} and {iz} are frequent. All other 2-itemsets are discarded.
In the third step, the algorithm proceeds with the 3-itemsets that only contain
frequent 2-itemsets. This iteration continues until no itemsets that can be fre-
quent are left. The search of frequent itemsets is thus basically an interleaving
of a counting phase and a meta-phase. In the counting phase, the frequencies of
some predetermined itemsets, the so-called candidates are counted. In the meta-
phase the results of the counting phase are evaluated. Based on the monotonicity
principle, some itemsets are a priori excluded.

Although the monotonicity of frequency is commonly used, there is to our
knowledge no previous work that discusses whether in the general case this rule
is complete, in the sense that it tells us everything we can derive from a given
set of frequencies. In this paper we consider the notion of a system of frequent
sets. A system of frequent sets contains, possibly incomplete, information about
the frequency of every itemset. For example, A :: 0.6, B :: 0.6, AB :: 0.1,¢ :: 0.5
is a system of frequent sets. This system of frequent sets represents partial in-
formation (e.g. obtained in counting phases.) In this system, A :: 0.6 expresses
the knowledge that itemset A has a frequency of at least 0.6. The system can
be improved. Indeed; we can conclude that AB :: 0.2 holds, since A :: 0.6 and
B :: 0.6 and there must be an overlap of at least a 0.2-fraction between the trans-
actions containing A and the transactions containing B. We can also improve
¢ :: 0.5, because ¢ :: 1 always holds. Therefore, this system is called incomplete.
When a system cannot be improved, it is complete. The completion of a system
represents the maximal information that can be assumed in the meta-phase.

We give three rules F1, F2, and F3 that characterize complete systems of
frequent sets; e.g. a system is complete iff it satisfies F1, F2, F3. We show that,
after a small modification to F3, this axiomatization is finite and every logical
implication can be inferred using these axioms a finite number of times.

As an intermediate stage in the proofs, we introduce rare sets. A rare set
expression K : pg expresses that at most a px-fraction of the transactions does
not contain at least one item of K.

The structure of the paper is as follows: in Section 2 related work is dis-
cussed. In Section 3 we formally define a system of frequent sets. In Section
4, an axiomatization for complete systems of frequent sets is given. Section 5
discusses inference of complete systems using the axioms. Section 6 summarizes
and concludes the paper.

Many proofs in this paper are only sketched. The full proofs can be found in

[3]-
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2 Related Work

In artificial intelligence literature, probabilistic logic is studied intensively. The
link with this paper is that the frequency of an itemset I can be seen as the
probability that a randomly chosen transaction from the transaction database
satisfies I; i.e. we can consider the transaction database as an underlying prob-
ability structure.

Nilsson introduced in [12] the following probabilistic logic problem: given a
finite set of m logical sentences Si,...,S, defined on a set X = {z1,...,z,}
of n boolean variables with the usual boolean operators A,V, and —, together
with probabilities pi, ..., pm, does there exists a probability distribution on the
possible truth assignments of X, such that the probability of S; being true,
is ezactly p; for all 1 < i < m. Georgakopoulos et al. prove in [7] that this
problem, they suggest the name probabilistic satisfiability problem (PSAT), is
NP-complete. This problem, however, does not apply to our framework. In our
framework, a system of frequent sets can always be satisfied. Indeed, since a
system only gives lower bounds on the frequencies, the system is always satisfied
by a transaction database where each transaction contains every item.

Another, more interesting problem, also stated by Nilsson in [12], is that
of probabilistic entailment. Again a set of logical sentences Si, ..., S, together
with probabilities p1,...,p, is given, and one extra logical sentence S, 1, the
target. It is asked to find best possible upper and lower bounds on the probabil-
ity that Sy,41 is true, given Si,...,S,, are satisfied with respective probabilities
P1,---,Pm- The interval defined by these lower and upper bounds forms the
so-called tight entailment of Sy, 1. It is well known that both PSAT and proba-
bilistic entailment can be solved nondeterministically in polynomial time using
linear programming techniques. In our framework, a complete system of frequent
sets is a system that only contains tight frequent expressions; i.e. the bounds of
the frequent expressions in the complete system are the best possible in view of
the system, and as such, this corresponds to the notion of tight entailment.

For a comprehensive overview of probabilistic logic, entailment and various
extensions, we refer to [9][10]. Nilsson’s probabilistic logic and entailment are
extended in various ways, including assigning intervals to logical expressions
instead of exact probability values and considering conditional probabilities [6].

In [4], Fagin et al. study the following extension. A basic weight formula is an
expression ayw(¢p1) +. .. + agw(Pr) > ¢, where ay, ..., a, and c are integers and
¢1,...,¢r are propositional formulas, meaning that the sum of all a; times the



weight of ¢; is greater than or equal to c. A weight formula is a boolean combi-
nation of basic weight formulas. The semantics are introduced by an underlying
probability space. The weight of a formula corresponds with the probability that
it is true. The main contribution (from the viewpoint of our paper) of [4] is the
description of a sound and complete axiomatization for this probabilistic logic.
The logical framework in our paper is in some sense embedded into the logic in
[4]. Indeed, if we introduce a propositional symbol P; for each item 4, the fre-
quent set expression K :: px can be translated as w(A;c x Pi) > px- As such, by
results obtained in [4], the implication problem in our framework is guaranteed
to be decidable. Satisfiability, and thus also the implication problem, are NP-
complete in Fagin’s framework. Our approach differs from Fagin’s approach in
the sense that we only consider situations where for all expressions a probability
is given.

Also in [6], axioms for a probabilistic logic are introduced. However, the
authors are unable to proof whether the axioms are complete. For a sub-language
(Type-A problems), they proof that their set of axioms is complete. However, this
sub-language is not sufficiently powerful to express frequent itemset expressions.

On the other side of the spectrum, we have related work within the context
of data mining. There have been attempts to proof some completeness results
for itemsets in this area. One such attempt is described shortly in [11]. In the
presence of constraints on the allowable itemsets, the authors introduce the
notion of ccc-optimality'. ccc-optimality can intuitively be understood as “the
algorithm only generates and tests itemsets that still can be frequent, using the
current knowledge.” Our approach however, is more general, since we do not
restrict ourselves to a particular algorithm. No attempt is known to us in the
context of data mining, that studies what we can derive from an arbitrary set
of frequent itemsets.

Finally, we would like to add that in our paper the emphasis is on intro-
ducing a logical framework for frequent itemsets and not on introducing a new
probabilistic logic, nor on algorithms.

3 Complete System of Frequent Sets

We formally define a system of frequent sets. We also define what it means for
a system to be complete.

To represent a database with transactions, we use a matrix. The columns
of the matrix represent the items and the rows represent the transactions. The
matrix contains a one in the (4, j)-entry if transaction 4 contains item j, else this
entry is zero. When R is a matrix where the columns represent the items in I, we
say that R is a matrix over I. In our running example we regularly refer to the
items with capital letters. With this notation, we get the following definition:

Definition 1. Let I = {I1,...,I,} be a set of items, and R be a matriz over I.
The frequency of an itemset K C I in R, denoted freq(K, R) is the fraction of
rows in R that have a one in every column of K.

1 ¢cc-optimality stands for Constraint Checking and Counting-optimality



Example 1. In Fig. 1, a matrix is given, together with some frequencies. The
frequency of DEF ? is 0.2, because 2 rows out of 10 have a one in every column
of DEF'. Note that, because R is a matrix, R can have identical rows.

Matrix R

A B D E F

¢ freq(A,R) =0.7
1 0101 1
1010 1 1 freq(B,R) = 0.5
010110 freq(AB,R) = 0.3
1 1100 1 freq(DEF,R) =0.2
100101 R satisfies A :: 0.5, AB : 0.3,
010111
11011 1 DEF :: 0.1
00100 1 R does not satisfy A : 0.8,
11101 0 ABC :: 04, DEF :: 0.3
1 0010 1

Fig. 1. A matrix together with some frequent set expressions

We now introduce logical implication and completeness of a system of fre-
quent sets.

Definition 2. Let I = {I1,...,I,} be a set of items.

— A frequent set expression over I is an expression K :: px with K C I and
pr rational with 0 < pg < 1.

— A matriz R over I satisfies K :: px iff freq(K,R) > pk. Hence itemset K
has frequency at least pk .

— A system of frequent sets over I is a collection

{ Kc1 K :pk
of frequent set expressions, with exactly one expression for each K C I.
— A matriz R over I satisfies the system {ng K ::pk iff R satisfies oll K ::
PK-
Ezxzample 2. In Fig. 1, the matrix R satisfies A :: 0.6, because the frequency of

A in R is bigger than 0.6. The matrix does not satisfy B :: 0.7, because the
frequency of B is lower than 0.7.

Definition 3. Let I = {I1,...,I,} be a set of items, and K C I.

— A system of frequent sets S over I logically implies K :: px, denoted S |
K : pk, iff every matriz that satisfies S, also satisfies K :: px. System
S1 logically implies system Sa, denoted S1 = Sa, iff every K :: p in Sy is
logically implied by S;.

2 DEF denotes the set {D, E, F'}



ABC :: 0.4

B, C, BC, ABC A, AB, AC
A] B| C A[B| C N
1 0 1]1]0 AB:06 AC:04 BC:06
1 1 1 11]1 | |
1 0 1 111 1 Y Y
1 1 1 0|1 1 A:0.6 B :0.8 C:08
0 | 1 1 0111 \ | /

¢l

Fig. 2. Proof-matrices for a system of frequent sets

— A system of frequent sets S = {Kg K :: pg is complete iff for each K :: p
logically implied by S, p < px holds.

Ezample 3. Let I = {A,B,C,D,E,F}. Consider the following system: S =
{kc: K ::pr, where ps = 0.7, pp = 0.5, pap = 0.3, pprr = 0.2, and px = 0
for all other itemsets K. The matrix in Fig. 1 satisfies S. S is not complete,
because in every matrix satisfying DEF :: 0.2, the frequency of DFE must be
at least 0.2, and S contains DE :: 0. Furthermore, S does not logically imply
EF :: 0.5, since R satisfies S, and R does not satisfy EF :: 0.5.

Consider the following system over I = {A, B,C}:
{$::1,A:06,B:08C:08AB : 06,AC :: 04,BC :: 0.6, ABC :: 0.4}.
This system is complete. We prove this by showing that for every subset K of
I, there exists a matrix Rx that satisfies S, and freq(K, Rk) is exactly pk.
These matrices then prove that for all K, we cannot further improve on K; i.e.
make pg larger. These proof-matrices are very important in the proof of the
axiomatization that is given in the next section. In Fig. 2, the different proof-
matrices are given.

When a system S is not complete, we can improve this system. Suppose a
system S = {K <: K : pk is not complete, then there is a frequent set expression
K :: p), that is logically implied by S, and p} > px. We can improve S by
replacing K :: pg by K :: p. The next proposition says that there exists a
unique system C(.9), that is logically implied by S and that is complete.

Proposition 1. Let I = {I,...,I,} be a set of items, and S = {Kg K :px
be a system of frequent sets. There exists a unique system C(S), the completion
of S, such that S |= C(S), and C(S) is a complete system.

Proof. Let Mk = {px | S E K :: px}. Mk always contains its supremum.
This can easily be seen as follows: suppose a matrix M satisfies S. Let p be
the frequency of K in M. Since M satisfies S, for all px € Mg, p > px holds,
and hence p > sup(Mgk) holds. Hence, every matrix satisfying S, also satisfies
K : sup(Mg), and thus S | K :: sup(Mk). It is straightforward that the
system {KCI K :: supp(Mk) is the unique completion of S.



Ezample 4. I = {A,B,C}. The system {¢ :: 1,A :: 0.6,B :: 0.8,C :: 0.8, AB ::
0.6, AC :: 0.4,BC :: 0.6, ABC :: 0.4} is the unique completion of the system
{$::0.8,4:06,B:08,C:08AB :: 0.6,AC :: 0.4,BC:: 0.4, ABC :: 0.4}.
BC :: 0.6 is implied by the second system, since there is an overlap of at least
0.6 between the rows having a one on B and the rows having a one on C.

Remark that when a system is complete, it is not necessary that there exists
one matrix such that for all itemsets the frequency is exactly the frequency given
in the system. Consider for example the following system: {¢ :: 1,4 :: 0.5, B ::
0.5,C :: 0.1,AB :: 0,AC :: 0,BC :: 0,ABC :: 0}. This system is complete.
However, we will never find a matrix in which the following six conditions are
simultaneously true: freq(A) = 0.5, freq(B) = 0.5, freq(C) = 0.1, freq(AB) =
0, freq(AC) =0, and freq(BC) = 0, because due to freq(A) = 0.5, freq(B) =
0.5, and freq(AB) = 0, every row has a one in A or in B. So, every row having a
one in C has also a one in A or in B, and thus violates respectively freq(AC) =0,
or freq(BC) = 0.

4 Axiomatizations

We give an axiomatization for frequent sets. An axiomatization in this context
is a set of rules that are satisfied by the system if and only if it is complete. In
order to simplify the notation we first introduce rare sets. In Section 5 we will
show how we can build finite proofs for all logical implications using the axioms
as rules of inference.

4.1 Rare Sets
Definition 4. Let I = {I,...,I,} be a set of items, and K C I.

— Let R be a matriz over I. The rareness of an itemset K C I in R, denoted
rare(K,R), is the fraction of rows in R that have a zero in at least one
column of K.

— A rare set expression over I is an expression K : pg with K C I and pg
rational with 0 < px < 1.

— A matriz R over I satisfies K : px iff rare(K, R) < pk. Hence itemset K
has rareness at most pg.

— A system of rare sets over I is a collection {KC, K : Pk of rare set expres-
sions, with exactly one expression for each K C I.

— A matrix R over I satisfies the system {KC[ K : pg iff R satisfies all K : pg.

— A system of rare sets S over I logically implies K : p, denoted S =K :piff
every matriz that satisfies S also satisfies K : p. System Sy logically implies
system Sz, denoted Sy = Sa, iff every K : p in Sy is logically implied by S;.

— A system of rare sets S = {,., K : pk is complete iff for each K : p logically
implied by S, px < p holds.



Example 5. In Fig. 1, the matrix R satisfies A : 0.4, because the rareness of
A in R is smaller than 0.4. The matrix does not satisfy B : 0.3, because the
rareness of B is greater than 0.3. Let I = {A, B}. The system {AB : 0.8, A :
0.3,B : 0.4,¢ : 0.4} is not complete. The unique completion of this system is
{AB:0.7,A:0.3,B:0.4,¢:0}.

The next proposition connects rare sets with frequent sets. The connection
between the two is straightforward. Indeed: the set of rows that have a zero in
at least one column on K is exactly the complement of the set of rows having
only ones in these columns. The second part of the proposition shows that an
axiomatization for rare sets automatically yields an axiomatization for frequent
sets.

Proposition 2. Let I = {I;...I,} be a set of items. For every matriz R over
I and every subset K of I holds that

— freq(K,R) +rare(K,R) = 1.
— R satisfies K : pi iff R satisfies K :: 1 — pg.

In the following subsection we prove an axiomatization for complete systems
of rare sets. From this axiomatization, we can easily derive an axiomatization
for frequent sets, using the last proposition.

4.2 Axiomatization of Rare Sets

Before we give the axiomatization, we first introduce our notation of bags.
Definition 5.

— A bag over a set S is a total function from S into {0,1,2,...}.

— Let K be a bag over S and s € S. We say that s appears n times in K iff
K(s) =n.

— If K and L are bags over S, then we define the bag-union of K and L,
notation KL, as follows: for all s € S, (K|JL)(s) = K(s) + L(s).

— Let S = {s1,82,..-,8n}- L c1'51,...,¢n'sn BFdenotes the bag over S in which
s; appears ¢; times for 1 <i <n.

— Let S be a set, K a bag over S. ) sK(s) is the cardinality of K, and is
denoted by |K]|.

— Let K be a bag over the subsets of a set S. Then | JK denotes the bag
Ukex K- The degree of an element s € S in K, denoted deg(s,K) is the
number of times s appears in | JK.

Ezample 6. K = { 1'{a,b},2'{b,c},2'{b,d} B is a bag over the subsets of
{a,b,¢,d}. UK = { 1'a,5'b,2'c,2'd }. deg(b,K) = 5. |K| = 5.

The next three rules form an axiomatization for complete systems of rare sets
in the sense that the complete systems are exactly the ones that satisfy these
three rules. The pi’s that appear in the rules, indicate the rareness-values given
in the system for the set K;i.e. K : pg is in the system.



R1 p; =0
R2 If Ky C K3, then pk, < pk,
R3 Let K C I, M a bag of subsets of K. Then

> pM
P < %

with k£ = minaeK(deg(aa M))3

The next theorem is one of the most important results of this paper. The
following lemma, proved in [3], will be used in the proof of the theorem.

Lemma 1. Given a set of indices I and given rational numbers ax,bi for every
non-empty K C I. Consider the following system of inequalities:

{ng ak <> X; <bk

iEK

This system has a solution (x1,...,T41), x; rational, iff for all K and L, bags
of subsets of I with | JK = JL holds that ) gy ax <Dy br

Theorem 1. Let S = {Kg K : pk be a system of rare sets over I. The follow-
ing two statements are equivalent:

— S is a complete system.
— S satisfies R1, R2, and R3.

Proof. (=) R1 and R2 are trivial.

R3: Let M be a bag over the subsets of an itemset K, and S = {KU K :pg
is a complete system. Let R be an arbitrary matrix that satisfies S. D}? is the
bag that contains exactly those rows r for which there exists a k£ in K such that

r(k) = 0. Then, for every L holds: |ﬁ§‘ < pr. If r € DE, then there exists a
a € K such that r(a) = 0. a appears in at least k = ming,cxdeg(a, M) of the
sets of M. Thus, k|Df| < 3, cnm [DF | We can conclude that in every matrix

p

satisfying S, rare(K, R) = |1|)R{<|| < ZM%

(«<) We show that if S = {, ., K : px satisfies R1, R2, and R3, we can for each
1temset K find a proof matrix RK, such that RK satisfies S, and rare(K, RK)

1. We specify RK by giving the frequency of every possible row r. 8z denotes
the fraction of rows that have a zero in every column of Z, and a one elsewhere.
We will show that there exists such a matrix Rx with only rows with at most one

zero, and this zero, if present, must be in a column of K; i.e. whenever |Z] > 1
or Z Z K, ,BZ =0.

3 1If k = 0, R3 should be interpreted as “px < 17
4 Remark the similarities with the traditional Armstrong-relations in functional de-
pendency theory [5]




This can be expressed by the following system of inequalities:
YVae K:0<3,<1 (1) all fractions are between 0 and 1

0<p <1 (2) idem
(> ack Ba) +Bo=1 (3) the frequencies add up to one
PK = ) 0ck Ba (4) the rareness of K is exactly px

VL CK :pr >3 ,c1 Ba (5) for other sets L, pr, > rare(L,}/ZE)

Every solution of this system describes a matrix that satisfies S. Only (5) needs
a little more explanation. For an arbitrary itemset L, rare(L, 1/%;) = rare(L N
K, }/%;) due to the construction. Because S satisfies R2, pr, > pxnr- Therefore,
it suffices to demand that rare(L, }/%;) <pp,forall LC K.
The system has a solution if the following (simpler) system has a solution:

{VL CK:pxk—pr <Y exBa—2aer Bo <pr (1)

1 is ok: choose L = K — {a}, then 0 5<R2) Pk —Pk—{a} S Ba <px <1

2+3 areok: let o =1—-3 xBa=1-pK

4 is ok: choose L = ¢, pr, = 0 (R1), and thus px <), x Bx < px

5is ok: pr, — prx > ZaeLﬂa - ZaeKﬂa + 4.
According to Lemma 1, this last system has a rational solution iff for all bags M
and N over the subsets of K , such that (JM = N, > ,cpm(Px — pr—m) <

> nen PN holds.

Let L=NU{ K—M|MGM}}.Then,byR?:wehavethat#2@(,
with £ = min,cxk#H N|ae NANeNJUEM | M eMAag M }).
Because #{ M | M e MAae M }=#{ N|NeNAaen }, k=#M.
We have: ) ;1 pr. > #Mpg. Since Y ;1 PL = D nNen PN+ prem PK—m and
#Mpx = Y yemPEs 2opem(PK — PE—M) < Y yen PN holds.

Ezample 7. The system {¢ : 0.5,4:0.5,B:0.25,C : 0.5,AB : 0,AC : 1,BC :
0, ABC : 1} is not complete, since ¢ : 0.5 violates R1.

The system {¢ : 0,4 :0.5,B:0.25,C : 0.5,AB : 0,AC : 1,BC : 0,ABC : 1} is
not complete, since for example AB : 0 and A : 0.5 together violate R2.

The system {¢:0,A:0,B:0,C :0,AB : 0,AC : 1,BC : 0,ABC : 1} is not
complete, since A : 0, C': 0, and AC : 1 together violate R3.

The system {¢ : 0,4 : 0,B : 0,C : 0,AB : 0,AC : 0,BC : 0,ABC : 0} is
complete, since it satisfies R1, R2, and R3. This system is the unique completion
of all systems in this example.

4.3 Axiomatization of Frequent Sets

From Proposition 2, we can now easily derive the following axiomatization for
frequent sets.

F1 p¢ =1
F2 If Ky C K, then pk, > pk,
F3 Let K C I, M a bag of subsets of K. Then

#M — EMEM Pm
k b

px >1—



with k = min.ex (deg(a, M))3

Theorem 2. Let S = {Kg K ::pg be a system of frequent sets over I. The
following two statements are equivalent:

— S is a complete system.
— S satisfies F1, F2, and F3.

5 Inference

In the rest of the text we continue working with rare sets. The results obtained
for rare sets can, just like the axiomatization, be carried over to frequent sets.

In the previous section we introduced and proved an axiomatization for com-
plete systems of rare and frequent sets. There is however still one problem with
this axiomatization. R3 states a property that has to be checked for all bags
over the subsets of K. This number of bags is infinite. In this section we show
that it suffices to check only a finite number of bags: the minimal multi-covers.
We show that the number of minimal multi-covers over a set is finite, and that
they can be computed.

We also look at the following problem: when an incomplete system is given,
can we compute its completion using the axioms? We show that this is indeed
possible. We use R1, R2, and R3 as inference rules to adjust rareness values
in the system; whenever we detect an inconsistency with one of the rules, we
improve the system. When the rules are applied in a systematic way, this method
leads to a complete system within a finite number of steps.

Actually, the completion of a system of frequent sets can be computed in an
obvious way by using linear programming. Indeed, when we look at the proof
of theorem 1, we can compute the completion of the system of inequalities by
applying linear programming. For all sets K, we can minimize px with respect
to a system of inequalities expressing that the frequencies obey the system of
rare sets. Since the system of inequalities has polynomial size in the number
of frequent itemsets, this algorithm is even polynomial in the size of the sys-
tem. However, in association rule mining, it is very common that the number
of itemsets becomes very large and thus the system of inequalities will in prac-
tical situations certainly become prohibitive large. Therefore, solving the linear
programming problem is a theoretical solution, but not a practical one. Also, as
mentioned in [6], an axiomatization has as an advantage that it provides human-
readable proofs, and that, when the inference is stopped before termination, still
a partial solution is provided.

5 If k = 0, R3 should be interpreted as “px > 0”



5.1 Minimal Multi-covers
Definition 6.

— A k-cover of a set S is a bag K over the subsets of S such that for all s € S,
deg(s,K) = k.

— A bag K over the subsets of a set S is a multi-cover of S if there exists an
integer k such that K is o k-cover of S.

— A k-cover K of S is minimal if it cannot be decomposed as K = K; |y Ko,
with Ky and Ko respectively ki- and ks-covers of S, k1 > 0 and ks > 0.

Ezample 8. Let K = {A,B,C,D}. { 1'AB,1'BC,1'"CD,1’AD,1"ABCD } is
a 3-cover of K. It is not minimal, because it can be decomposed into the
following two minimal multi-covers of K: { 1'AB,1'BC,1'CD,1’"AD } and
{ 'ABCD }.

The new rule that replaces R3 states that it is not necessary to check all
bags; we only need to check the minimal multi-covers. This gives the following
R3’:

R3’ Let K C I, M a minimal k-cover of K. Then

Pm
Pk < Lem Py .
k
Theorem 3. Let S be a system of rare sets over I. The following statements
are equivalent:

1. S satisfies R1, R2, and R3.
2. S satisfies R1, R2, and R3".

SKETCH OF THE PROOF. (1) The direction R1, R2, R3 implies R1, R2, R3’
is trivial, since every k-cover of K is also a bag over the subsets of K, where the
minimal degree is k.

(2) Suppose the system S satisfies R1 and R2, but violates R3. There exists

ELGKPL

a set K and a bag K over the subsets of K, such that px > =£$5—, with
k = mingcrdeg(a,K). Starting from this bag, one can construct a minimal
multi-cover of K, that violates R3’. We show this construction with an example.
Suppose K = { AB,BC,ABC }. Every element appears at least 2 times in
K. We first construct a multi-cover from K, by removing elements that appear
more than others. In this example, B appears 3 times, and all other elements
appear only 2 times. We remove B from one of the sets in K, resulting in
{ A,BC,ABC }. The sum over K became smaller by this operation, since
S satisfies R2. This multi-cover can be split into two different minimal multi-
PL

covers: K; = { A,BC }, and Ky = { ABC }. Because now E—ELZK— =
ZLGKl pL+ZLEK2pL ZLGK,- ELGKPL
s=res sLek

pL
171 T is smaller than

Proposition 3. Let K be a finite set. The number of minimal multi-covers of
K is finite and computable.

, for at least one 1,

The proof can be found in [3].



5.2 Computing the Completion of a System with Inference Rules

We prove that by applying R1, R2, and R3’ as rules, we can compute the
completion of any given system of rare sets. Applying for example rule R2 means
that whenever we see a situation K; C Ko, and the system states K : px, and
Ky : pk,, and pg, < pk,, we improve the system by replacing K; : pg, by
K : pk,. It is clear that R1 can only be applied once; R2 and R3 never create
situations in which R1 can be applied again.

R2 is a top-down operation, in the sense that the rareness values of smaller
sets is adjusted using values of bigger sets. So, for a given system S we can
easily reach a fixpoint for rule R2, by going top-down; we first try to improve
the frequencies of the biggest itemsets, before continuing with the smaller ones.

R3 is a bottom-up operation; values of smaller sets are used to adjust the
values of bigger sets. So, again, for a given system S, we can reach a fixpoint for
rule R3, by applying the rule bottom-up.

A trivial algorithm to compute the completion of a system is the following:
apply R1, and then keep applying R2 and R3 until a fixpoint is reached. Clearly,
the limit of this approach yields a complete system, but it is not clear that a
fixpoint will be reached within a finite number of steps. Moreover, there are
examples of situations in which infinite loops are possible. In Fig. 3, such an
example is given. The completion of the first system, is clearly all rareness values
equal to zero, because for every matrix satisfying the system, none of the rows
have a zero in AB, and none have a zero in BC, so there are no zeros at all
in the matrix. When we keep applying the rules as in Fig. 3, we never reach
this fixpoint, since in step 2n, the value for ABC' is (3)". This is however not
a problem; we show that when we apply the rules R2 and R3 in a systematic
way, we always reach a fixpoint within a finite number of steps. This systematic
approach is illustrated in Fig. 4. We first apply R2 top-down until we reach
a fixpoint for R2, and then we apply R3 bottom-up until we reach a fixpoint
for R3. The general systematic approach is written down in Fig. 5. We prove
that for every system these two meta-steps are all there is needed to reach the
completion.

Definition 7. Let I be a set of items, J C I, and S = {Kg K : pk a system

of rare sets over I. The projection of S on J, denoted proj(S,J), is the system
SI = {Kg.l K:pK.

Lemma 2. Let I be a set of items, J C I, and S = {Kg K :px a system of
rare sets over I. If S satisfies R2, then proj(C(S),J) = C(proj(S,J)) .

Theorem 4. The algorithm in Fig. 5 computes the completion of the system of
rare sets S.

SKETCH OF THE PROOF. Let I = {A, B,C}, and S be a system of rare sets over
1. After the top-down step, the resulting system satisfies R2. First we apply
R3 to adjust the value of A. Because S satisfies R2, and after application of
R3 on A, the system {¢ : 0,A : pa} is complete, we cannot further improve
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Fig. 4. Systematic application of the rules avoids infinite computations

on A; proj(C(S),{A}) = C(S,proj(S,{A})). We can use the same argument
for B and C. Then we apply R3 to adjust the value of AC. After this step,
{¢:0,A:pa,B :pp,AC : pac} satisfies R3. This system also satisfies R2,
because otherwise we could improve on A or on B, and we just showed that we
cannot further improve on A or B. Thus, the system proj(S,{A, C}) is closed,
and thus we cannot further improve on AC. This way, we iteratively go up, and
finally we can conclude that S must be complete after the full bottom-up step.

6 Summary and Further Work

We presented an axiomatization for complete systems of frequent sets. As an
intermediate stage in the proofs, we introduced the notion of a system of rare
sets. The axiomatization for rare sets contained three rules R1, R2, and R3.
From these rules we could easily derive the axiomatization, F1, F2, and F3 for
frequent sets. Because rule R3 yields a condition that needs to be checked for an
infinite number of bags, we replaced R3 by R3’. We showed that the completion



Close(S) TopDown(S)

ps =0 for ¢ = n downto 1 do

TopDown(S) for all itemsets K of cardinality ¢ do

BottomUp(S) make px = minkcr(pr)
BottomUp(S)

for i =1tondo
for all itemsets K of cardinality ¢ do

make px =

ZK'erK')

Mg  minimal x-cover of K ( &

Fig. 5. Algorithm Close for finding the completion of the system S = {KCI K :pk
over I ={h,...,I,} B

can be computed by applying R1, R2, and R3’ as inference rules. If these rules
are applied first top-down, and then bottom-up, the completion is reached within
a finite number of steps. In the future we want to study an axiomatization for
systems in which not for every set a frequency is given. For some preliminary
results on these sparse systems, we refer to [3]. Another interesting topic is
expanding the axiomatization to include association rules and confidences.
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