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Definition
A constraint query language is a query language for

constraint databases.

Historical Background
The field of constraint databases was initiated in

1990 in a paper by Kanellakis, Kuper and Revesz [9].

The goal was to obtain a database-style, optimizable

version of constraint logic programming. It grew out

of the research on DATALOG and constraint logic

programming. The key idea was that the notion of

tuple in a relational database could be replaced by a

conjunction of constraints from an appropriate lan-

guage, and that many of the features of the relational

model could then be extended in an appropriate way.

In particular, standard query languages such as those

based on first-order logic and DATALOG could be

extended to such a model.

It soon became clear, however, that recursive con-

straint query languages led to non-effective languages.

The focus therefore shifted to non-recursive constraint

query languages. The standard query language is the

constraint relational calculus (or equivalently, the con-

straint relational algebra). The study of this query lan-

guage turned out to lead to many interesting research

problems. During the period from 1990 to 2000, the

constraint setting has been studied in great generality

which led to deep connections between constraint data-

bases and embedded finite model theory. Also, the

potential application of constraint databases in the

spatial context led to numerous theoretical results

and concrete implementations such as the DEDALE

and the DISCO systems. The connection with so-called

o-minimal geometry underlies many of the results in

the spatial setting. The success of this research led to

the publication of a comprehensive survey of the area in

2000 [11] and a textbook in 2002 [13].

In recent years, constraint query languages have

been studied in new application domains such a

strings, spatio-temporal and moving objects.

Foundations
In the constraint model, a database is viewed as a

collection of constraints specified by quantifier-free

first-order logic formulas over some fixed vocabu-

lary O. When interpreted over an O-structure
M ¼ hU;Oi, each constraint corresponds to an

M-definable set. Consequently, when interpreted

over M, an O-constraint database corresponds to a

collection of M-definable sets. For instance, consider

the vocabulary O = (þ, #, 0, 1, <) and M ¼ hR;Oi.
Constraints in first-order logic over O, denoted

by FO(O), correspond to Boolean combinations of

polynomial inequalities with integer coefficients. The

corresponding M-definable sets are better known as

semi-algebraic sets. Let R ¼ fR; Sg be a relational

schema consisting of two binary relations R and S

and let D be the constraint database that maps

R 7! ’R(x, y) = (x2 þ y2 $ 1) ∧ (y % x & 0) and

S 7! ’S(x, y) = (x2 + y2 $ 1) ∧ (%y % x & 0). The two

M-definable sets in R2 corresponding to ’R and ’S

are shown in Figs. 1(a) and (b) respectively.

A constraint database can therefore be viewed from

two different perspectives: First, one can simply look

at the finite representations (constraints) stored in

them; Second, one can regard them as a set of definable

sets. Whereas in traditional relational databases, a

query is simply a mapping that associates with each

database an answer relation, in the constraint setting

the two different perspectives give rise to two different

notions of queries.

Indeed, for a fixed vocabulary O, relational schema

R consisting of relation names R1,...,R‘, where each

relation Ri is of arity ni > 0, and natural number k, a

k-ary constraint query with schema R over O, is a

(partial) function Q that maps each O-constraint data-
basesD with schemaR to a k-aryO-constraint relation
Q(D). That is, a constraint query works entirely on the

representational (constraint) level. On the other hand,

given an additional O-structure M ¼h U;Oi, a k-ary

unrestricted query with schemaR overM is a (partial)

function Q that maps each collection D of sets in Uni ,

for i 2 [1, ‘], to a set Q(D) in Uk . Such a collection of

setsUni , for i 2 [1, ‘], is called an unrestricted database

with schema R over M.

For instance, consider again O = (þ, #,0,1,<)

and R ¼ fR; Sg. The mapping Q1 that associates

each O-constraint database D over R with the binary

O-constraint relation defined by taking the disjunction

of the constraints in R and S, is an example of a 2-ary

constraint query overO. When applied on the database

D given above,Q1(D) is mapped to ’R(x, y)∨ ’S(x, y).

Similarly, the mapping Q2 that maps D to the
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constraint in R or S that contains the polynomial with

the largest coefficient (if there is no such unique con-

straint then Q2 is undefined) is also a constraint query.

It will be undefined on the example database D

since both R and S consist of a polynomial with coeffi-

cient one.

So far, only constraint queries have been consid-

ered. To relate constraint and unrestricted queries

requires some care. Clearly, a constraint query only

makes sense if it corresponds to an unrestricted query.

In this case, a constraint query is called consistent. More

formally, a constraint query Q is called consistent if

there exists an unrestricted query Q0 such that for any

constraint database D and any unrestricted database

D0, ifD representsD0, thenQ(D) is defined if and only

if Q0(D0) is defined and furthermore, Q(D) represent

Q0(D0). One also says that Q represents Q0.

For instance, consider again O = (þ, #,0,1,<),

M ¼ hR;Oi and R ¼ fR; Sg. The mapping ~Q1 that

assigns to any two sets A ' R2 and B ' R2,

corresponding to R and S, respectively, their union

A [ B ' R2 is an unrestricted query. It is clear that

Q1 and ~Q1 satisfy the condition of consistency and

therefore Q1 is consistent. Fig. 1(c) shows ~Q1(D0) for

the unrestricted databaseD0 shown in Fig. 1(a) and (b).

This set is indeed represented by the constraint rela-

tion Q1(D) 7! ’R(x, y) ∨ ’S(x, y). On the other hand,

it is easily verified that Q2 is not consistent. Indeed, it

suffices to consider the behavior of Q2 on D defined

above and D0 defined by R 7! ’0
R(x, y) = (x2 + y2 $ 1)

∧ (6(y % x) & 0) and S 7! ’0
S(x, y) = (x2 + y2 $ 1) ∧

(%y% x& 0). While both D and D0 represent the same

unrestricted database, note that Q2(D) is undefined

while Q2(D
0) 7! ’R. Hence, no unrestricted query

that is consistent with Q2 can exist.

Finally, unrestricted queries are defined without

any reference to the class of M-definable sets. A desir-

able property, however, is that when an unrestricted

query Q is defined on an unrestricted database D that

consists of M-definable sets, then also Q(D) is an

M-definable set. Such unrestricted queries are called

closed. Note that an unrestricted query that is repre-

sented by a consistent constraint query is uniquely

defined and moreover is trivially closed. An example

of an unrestricted query for O = (+,#,0,1,<) and

M ¼ hR;Oi that is not closed is the query Q that

maps any M-definable set A in R2 to its intersection

A \ ℚ2. Fig. 1(f) shows (approximately) the result of

this query on ~Q1(D0) (i.e., Fig. 1(c)). Since this is not a

semi-algebraic set inR2, it cannot be defined by means

of a quantifier-free FO(O)-formula. As a consequence,

Q is not closed.

Now that the notion of query is defined in the

setting of constraint databases, the basic constraint

query language is introduced. This language, in the

same spirit as the relational calculus for traditional

relational databases, is the relational calculus or first-

order logic of the given class of constraints. More

specifically, given a vocabulary O and relational sche-

ma R, a relational calculus formula over O is a first-

order logic formula over the expanded vocabulary

ðO;RÞ obtained by expanding O with the relation

names (viewed as predicate symbols) of the schema

R. This class of queries is denoted by FOðO;RÞ, or
simply FO(O) whenR is understood from the context.

For instance, for O = (þ, #, 0, 1, <) and

R ¼f R; Sg, the expressions ’1(x, y) = (R(x, y) ∨
S(x, y)) ∧ x > 0 and ’2(x) = ∃y’1(x, y) are formulas

in FO(þ, #, 0, 1, <, R, S).

Given an O-structure M ¼ hU;Oi, formulas in

FOðO;RÞ express (everywhere defined) unrestricted

queries with schema R over M. Indeed, a formula

’ðx1;:::;xkÞ 2 FOðO;RÞ defines the k-ary unrestricted
query Q over M as follows: consider the expansion of

M to a structure hM;Di ¼ hU;O;Di over the ex-

panded vocabulary ðO;RÞ by adding the sets in the

unrestricted database D to M for each Ri 2 R. Then,

QðDÞ¼ fða1;:::;akÞ2Uk j 0hM;Di * ’ða1;:::;akÞg:
For instance, for O = (þ,#,0,1,<) and

M ¼hR;OÞ, the formula ’1(x, y) defined above

Constraint Query Languages. Figure 1. Sets inR2 defined by ’R(x, y) (a); by ’S(x, y) (b); by ’R(x, y) ∨ ’S(x, y) (c); and by

’1(x, y) (d). The set in R defined by ’2(x) (e). An example of a non-definable set in R2 (f).
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corresponds to the unrestricted query Q1 that takes the

union of the two sets in R2 corresponding to R and S,

respectively, restricted to those points in R2 with

strictly positive x-coordinate. Similarly for ’2, but

with an additional projection on the x-axis. The results

of these two unrestricted queries have been shown in

Figs. 1(d), (e), respectively.

The previous example raises the following two

questions: (i) are the unrestricted queries expressed

by formulas in first-order logic closed, and (ii) if so,

can one find a corresponding constraint query that is

effectively computable? The fundamental mechanism

underlying the use of first-order logic as a constraint

query language is the following observation that pro-

vides an answer to both questions:

" Every relational calculus formula ’ expresses a consis-

tent, effectively computable, total constraint query

that represents the unrestricted query expressed by

’, if and only if M admits effective quantifier

elimination.

Here, an O-structure M admits effective quantifier

elimination if there exists an effective algorithm that

transforms any first-order formula in FO(O) to an

equivalent (in the structure M) quantifier-free first-

order formula in FO(O).
Consider the two FO(þ,#,0,1,<, R, S)-formulas

’1 and ’2 given above. It is known that the struc-

ture hR, þ, #, 0, 1, <) admits effective quantifier-

elimination. In case of ’1 it is easy to see that the result

of corresponding constraint query is obtained by

‘‘plugging’’ in the constraints for R (resp. S) as given

by the constraint database into the expression for ’1.

That is, on the example database D, ’1 corresponds

to the constraint query that maps D to (’R(x, y) ∨
’S(x, y)) ∧ (x > 0), which is a 2-ary O-constraint
relation. In case of ’2, however, first plug in the

descriptions of the constraints as before, resulting in

∃y (’R(x, y) ∨ ’S(x, y)) ∧ (x > 0). In order to obtain

an O-constraint relation, one needs perform quantifi-

er-elimination. It is easily verified that in this example,

a corresponding constraint query is one that maps D

to (0 < x) ∧ (x $ 1) which is consistent with Fig. 1(e).

ForO-structuresM that admit effective quantifier-

elimination, this suggests the following effective evalu-

ation mechanism for constraint relational calculus

queries ’ on a constraint database D: (i) plug in

the contents of D in the appropriate slots (relations).

Denote the resulting formula by plug(’, D); and

(ii) eliminate the quantifiers in plug(’, D). Since D

consists of quantifier-free formulas, the number of

quantifiers that need to be eliminated is the same as in

’ and is therefore independent of D. For many struc-

tures M this implies that the evaluation of constraint

queries can be done in polynomial data complexity,

which is a desirable property for any query language.

It is important to point out that the classical equiv-

alence between the relational calculus and the relation-

al algebra can be easily extended to the constraint

setting. That is, for a fixed O and schema R, one can

define a constraint relational algebra and show that

every constraint relational calculus formula can be

effectively converted to an equivalent constraint rela-

tional algebra expression, and vice versa. This equiva-

lence is useful for concrete implementations of

constraint database systems.

The study of expressivity of FOðO;RÞ for various
O-structures M has led to many interesting results.

In particular, the impact of the presence of the ‘‘extra’’

structure on the domain elements in U has been

addressed when D consists of an ordinary finite

relational database that takes values from U [3]. In

particular, the correspondence between natural and

active-domain semantics has been revisited. That is,

conditions are identified for M ¼ hU;Oi such that

the language FOðO;RÞ is equal to FOactðO;RÞ, the
query language obtained by interpreting 8x and ∃x
over the active domain of D instead of over U.

Such structures are said to admit the natural-

active collapse. Similarly, ordered structures M are

identified that admit the active-generic collapse. That

is, FOactðO;RÞ is equal to FOactð<;RÞ with respect to

the class of generic queries. In other words, every

generic query definable under active domain semantics

with O-constraints is already definable with just order

constraints. Finally, structures M are considered that

allow the natural-generic collapse. This is the same as

the active-generic collapse but with natural domain

semantics instead of active domain semantics. The

study of these collapse properties for various structures

not only sheds light on the interaction of the structure

on U and the query language, it is also helpful to

understand the expressiveness of constraint query

languages [3,11].

Indeed, let O = (þ, +, 0, 1, <) and M ¼ hR;Oi.
It can be shown that M admits all three collapses

because it is a so-called o-minimal structure. As a

consequence, the query EVEN that returns yes if the
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cardinality of D is even and no otherwise, is not ex-

pressible in FOðO;RÞ. Indeed, if it would be express-

ible by a query ’ in FOðO;RÞ it would already have

been expressible by a query in FOactð<;RÞ, which is

known not to be true in the traditional database

setting.

The expressivity of FOðO;RÞ has been studied ex-

tensively as well when D corresponds to sets of infinite

size. In particular, expressiveness questions have

been addressed in the spatial setting where O = (+, #,
0, 1, <) and M ¼ hR;Oi (polynomial constraints);

and O0 = (þ, 0, 1, <) and M ¼ hR;O0i (linear con-
straints). In this setting, many reductions are pre-

sented in [7] to expressiveness questions in the finite

case. Combined with the collapse results mentioned

above, these reductions were used to show that, for

example, topological connectivity of O- (resp. O0-)

constraint databases is not expressible in first-order

logic. Indeed, a proof of this results relies on the fact

that the EVEN-query is not expressible in FOðO;RÞ
(resp. FOðO0;RÞ) [7].

An interesting line of work in the spatial context

concerns the expressive power of FOðO;RÞ with respect

to queries that preserve certain geometrical properties.

More formally, let G be a group of transformations of

Rk. A query Q is called G-generic if, for every transfor-
mation g 2 G, and for any two databases D and D0,

g(D) = D0 implies g(Q(D)) = Q(D0). Transformation

groups and properties of the corresponding generic

queries have been studied for the group of homeo-

morphisms, affinities, similarities, isometries, among

others [8]. Especially the study of the topologically

queries (those that are generic under homeomorph-

isms) has received considerable attention [10,2].

To conclude, both for the historical reasons men-

tioned above and in view of the limited expressive

power of FOðO;RÞ, various recursive extensions of

FOðO;RÞ have been proposed such as: constraint tran-
sitive-closure logic [5], constraint DATALOG [9], and

FOðO;RÞ extended with a WHILE-loop [8]. The inter-

action of recursion with the structure on U imposed

by O leads in most cases to computationally com-

plete query languages. Worse still, queries defined in

these languages may not be closed or even terminate.

To remedy this, special-purpose extensions of FOðO;RÞ
have been proposed that guarantee both termina-

tion and closure. Characteristic examples include

FOðO;RÞ þ AVG and FOðO;RÞ þ SUM in the con-

text of aggregation [4]. In the spatial setting,

extensions of FOðO;RÞ with various connectivity

operators have been proposed [1].

Results concerning constraint query languages have

been both extended to great generality and applied to

concrete settings. Refer to [14] for a gentle introduc-

tion and to [11] for a more detailed survey of this

research area up to 2000. Some more recent results

are included in Chapter 5 of [12] for the general

constraint setting and Chapter 12 in [6] for the spatial

setting.

Key Applications
Manipulation and querying of constraint databases,

querying of spatial data.
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Constraint-Driven Database Repair

WENFEI FAN1,2

1University of Edinburgh, Edinburgh, UK
2Bell Laboratories, Murray Hill, NJ, USA

Synonyms
Data reconciliation; Minimal-change integrity mainte-

nance; Data standardization

Definition
Given a set S of integrity constraints and a database

instance D of a schema R, the problem of constraint-

driven database repair is to find an instance D 0 of the

same schema R such that (i) D 0 is consistent, i.e., D 0

satisfies S, and moreover, (ii) D 0 minimally differs

from the original database D, i.e., it takes a minimal

number of repair operations or incurs minimal cost to

obtain D 0 by updating D.

Historical Background
Real life data is often dirty, i.e., inconsistent, inaccu-

rate, stale or deliberately falsified. While the prevalent

use of the Web has made it possible, on an unprece-

dented scale, to extract and integrate data from diverse

sources, it has also increased the risks of creating and

propagating dirty data. Dirty data routinely leads to

misleading or biased analytical results and decisions,

and incurs loss of revenue, credibility and customers.

With this comes the need for finding repairs of dirty

data, and editing the data to make it consistent. This

is the data cleaning approach that US national statisti-

cal agencies, among others, has been practicing for

decades [10].

The notion of constraint-based database repairs is

introduced in [1], highlighting the use of integrity

constraints for characterizing the consistency of the

data. In other words, constraints are used as data

quality rules, which detect inconsistencies as violations

of the constraints. Prior work on constraint-based

database repairs has mostly focused on the following

issues. (i) Integrity constraints used for repair. Earlier

work considers traditional functional dependencies,

inclusion dependencies and denial constraints [1,2,4,

6,12]. Extensions of functional and inclusion depen-

dencies, referred to as conditional functional and

inclusion dependencies, are recently proposed in [3,9]

for data cleaning. (ii) Repair semantics. Tuple deletion

is the only repair operation used in [6], for databases in

which the information is complete but not necessarily

consistent. Tuple deletion and insertion are conside-

red in [1,4] for databases in which the information

may be neither consistent nor complete. Updates, i.e.,

attribute-value modification are proposed as repair

operations in [12]. Cost models for repairs are studied

in [2,8]. (iii) Algorithms. The first algorithms for

finding repairs are developed in [2], based on tradition-

al functional and inclusion dependencies. Algorithms

for repairing and incrementally repairing databases are

studied in [8], using conditional functional dependen-

cies. The repair model adopted by these algorithms

supports updates as repair operations. (iv) Fundamen-

tal issues associated with constraint-based repairs. One

issue concerns the complexity bounds on the database

repair problem [2,6]. Another issue concerns the static

analysis of constraint consistency [3,9] for determining

whether a given set of integrity constraints is dirty

or not itself.

Constraint-based database repairs are one of the

two topics studied for constraint-based data cleaning.

The other topic, also introduced in [1], is consistent

query answers. Given a query Q posed on an inconsis-

tent database D, it is to find tuples that are in the

answer of Q over every repair of D. There has been a

host of work on consistent query answers [1,4,6,11,12]

(see [5,7] for comprehensive surveys).

Foundations
The complexity of the constraint-based database repair

problem is highly dependent upon what integrity con-

straints and repair model are considered.

Integrity Constraints for Characterizing Data

Consistency

A central technical issue for data cleaning concerns how

to tell whether the data is dirty or clean. Constraint-based

database repair characterizes inconsistencies in terms of

violations of integrity constraints. Constraints employed

for data cleaning include functional dependencies,
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