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Abstract. Sequence classification is an important task in data mining.
We address the problem of sequence classification using rules composed
of interesting itemsets found in a dataset of labelled sequences and ac-
companying class labels. We measure the interestingness of an itemset
in a given class of sequences by combining the cohesion and the sup-
port of the itemset. We use the discovered itemsets to generate confident
classification rules, and present two different ways of building a classi-
fier. The first classifier is based on the CBA (Classification based on
associations) method, but we use a new ranking strategy for the gener-
ated rules, achieving better results. The second classifier ranks the rules
by first measuring their value specific to the new data object. Experi-
mental results show that our classifiers outperform existing comparable
classifiers in terms of accuracy and stability, while maintaining a com-
putational advantage over sequential pattern based classification.

1 Introduction

Many real world datasets, such as collections of texts, videos, speech signals,
biological structures and web usage logs, are composed of sequential events or
elements. Because of a wide range of applications, sequence classification has
been an important problem in statistical machine learning and data mining.

The sequence classification task can be defined as assigning class labels to
new sequences based on the knowledge gained in the training stage. There exist a
number of studies integrating pattern mining techniques and classification, such
as classification based on association rules [10], sequential pattern based sequence
classifiers [8,13], and many others. These combined methods can output good
results as well as provide users with information useful for understanding the
characteristics of the dataset.

In this paper, we propose to utilise a novel itemset mining technique [4] in
order to obtain an accurate sequence classifier. An itemset in a sequence should
be evaluated based on how close to each other its items occur (cohesion) and how
often the itemset itself occurs (support). We therefore propose a new method
called sequence classification based on interesting itemsets (SCII), that greatly
improves on the accuracy obtained by other classifiers based on itemsets, as
they typically do not take cohesion into account. Moreover, we also achieve a
reduction in complexity compared to classifiers based on sequential patterns, as
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we generate and evaluate fewer patterns, and, yet, using cohesion, we still take
the location of items within the sequences into account.

The main contribution of this paper consists of two SCII classifiers, both
based on frequent cohesive itemsets. By using cohesion, we incorporate the se-
quential nature of the data into the method, while, by using itemsets, we avoid
the complexity of mining sequential patterns. The two classifiers differ in how
the rules are selected and ranked within the classifier, and we experimentally
demonstrate that both give satisfactory results.

The rest of the paper is organised as follows. Section 2 gives a review of the
related work. In Sections 3 and 4, we formally describe the sequence classification
problem setting and present our two approaches for generating rules and building
classifiers, respectively. We end the paper with an experimental evaluation in
Section 5 and a summary of our conclusions in Section 6.

2 Related Work

The existing sequence classification techniques deploy a number of different ap-
proaches, ranging from decision trees, Näıve Bayes, Neural Networks, K-Nearest
Neighbors (KNN), Hidden Markov Model (HMM) and, lately, Support Vector
Machines (SVMs) [7].

In this section, we give an overview of pattern-based classification methods.
Most such work can be divided into the domains of classification based on associ-
ation rules and classification based on sequential patterns. The main idea behind
the first approach is to discover association rules that always have a class label
as their consequent. The next step is to use these patterns to build a classifier,
and new data records are then classified in the appropriate classes. The idea
of classification based on association rules (CBA) was first proposed by Liu et
al. [10]. In another work, Li et al. [9] proposed CMAR, where they tackled the
problem of overfitting inherent in CBA. In CMAR, multiple rules are employed
instead of just a single rule. Additionally, the ranking of the rule set in CMAR
is based on the weighted Chi-square of each rule replacing the confidence and
support of each rule in CBA. Yin and Han [15] proposed CPAR which is much
more time-efficient in both rule generation and prediction but its accuracy is as
high as that of CBA and CMAR.

The concept of sequential pattern mining was first described by Agrawal and
Srikant [2], and further sequential pattern mining methods, such as Generalized
Sequential Patterns (GSP) [12], SPADE [16], PrefixSpan [11], and SPAM [3],
have been developed since. A number of sequence classifiers have been based on
these methods.

Lesh et al. [8] combined sequential pattern mining and a traditional Näıve
Bayes classification method to classify sequence datasets. They introduced the
FeatureMine algorithm which leveraged existing sequence mining techniques to
efficiently select features from a sequence dataset. The experimental results
showed that BayesFM (combination of Näıve Bayes and FeatureMine) is bet-
ter than Näıve Bayes only. Although pruning is used in their algorithm, there
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was still a great number of sequential patterns used as classification features. As
a result, the algorithm could not effectively select discriminative features from
a large feature space.

Tseng and Lee [14] proposed the Classify-By-Sequence (CBS) algorithm for
classifying large sequence datasets. The main methodology of the CBS method
is mining classifiable sequential patterns (CSPs) from the sequences and then
assigning a score to the new data object for each class by using a scoring func-
tion, which is based on the length of the matched CSPs. They presented two
approaches, CBS ALL and CBS CLASS. In CBS ALL, a conventional sequen-
tial pattern mining algorithm is used on the whole dataset. In CBS CLASS,
the database is divided into a number of sub-databases according to the class
label of each instance. Sequential pattern mining was then implemented on
each sub-database. Experimental results showed that CBS CLASS outperforms
CBS ALL. Later, they improved the CBS CLASS algorithm by removing the
CSPs found in all classes [13]. Furthermore, they proposed a number of alter-
native scoring functions and tested their performances. The results showed that
the length of a CSP is the best attribute for classification scoring.

Exarchos et al. [6] proposed a two-stage methodology for sequence classifi-
cation based on sequential pattern mining and optimization. In the first stage,
sequential pattern mining is used, and a sequence classification model is built
based on the extracted sequential patterns. Then, weights are applied to both
sequential patterns and classes. In the second stage, the weights are tuned with
an optimization technique to achieve optimal classification accuracy. However,
the optimization is very time consuming, and the accuracy of the algorithm is
similar to FeatureMine.

Additionally, several sequence classification methods have been proposed for
application in specific domains. Exarchos et al. [5] utilised sequential pattern
mining for protein fold recognition, while Zhao et al. [17] used a sequence clas-
sification method for debt detection in the domain of social security.

The main bottleneck problem for sequential pattern based sequence classi-
fication being used in the real world is efficiency. Mining frequent sequential
patterns in a dense dataset with a large average sequence length is time and
memory consuming. None of the above sequence classification algorithms solve
this problem well.

3 Problem Statement

In this paper, we consider multiple event sequences where an event e is a pair
(i, t) consisting of an item i ∈ I and a time stamp t ∈ N, where I is the set
of all possible items and N is the set of natural numbers. We assume that two
events can never occur at the same time. For easier readibility, in our examples,
we assume that the time stamps in a sequence are consecutive natural numbers.
We therefore denote a sequence of events by s = e1, · · · , el, where l is the length
of the sequence, and 1, · · · , l are the time stamps.



4

Let L be a finite set of class labels. A sequence database SDB is a set of
data objects (s, Lk), such that s is a sequence and Lk ∈ L is a class label (k =
1, 2, · · · ,m, where m is the number of classes). The set of all sequences in SDB
is denoted by S. We denote the set of sequences carrying class label Lk by Sk.

The patterns considered in this paper are itemsets, or sets of items coming
from the set I. The support of an itemset is typically defined as the number of
different sequences in which the itemset occurs, regardless of how many times
the itemset occurs in any single sequence. To determine the interestingness of an
itemset, however, it is not enough to know how many times the itemset occurs.
We should also take into account how close the items making up the itemset
occur to each other. To do this, we will define interesting itemsets in terms
of both support and cohesion. Our goal is to first mine interesting itemsets in
each class of sequences, and then use them to build a sequence classifier, i.e., a
function from sequences S to class labels L.

We base our work on an earlier work on discovering interesting itemsets in a
sequence database [4], and we begin by adapting some of the necessary definitions
from that paper to our setting. The interestingness of an itemset depends on two
factors: its support and its cohesion. Support measures in how many sequences
the itemset appears, while cohesion measures how close the items making up the
itemset are to each other on average.

For a given itemset X , we denote the set of sequences that contain all items
of X as N(X) = {s ∈ S|∀i ∈ X, ∃(i, t) ∈ s}. We denote the set of sequences
that contain all items of X labelled by class label Lk as Nk(X) = {s ∈ Sk|∀i ∈
X, ∃(i, t) ∈ s}. The support of X in a given class of sequences Sk can now be

defined as Fk(X) = |Nk(X)|
|Sk|

.

We begin by defining the length of the shortest interval containing an itemset
X in a sequence s ∈ N(X) as W (X, s) = min{t2 − t1 + 1|t1 ≤ t2 and ∀i ∈
X, ∃(i, t) ∈ s, where t1 ≤ t ≤ t2}. In order to calculate the cohesion of an
itemset within class k, we now compute the average length of such shortest

intervals in Nk(X): Wk(X) =
∑

s∈N
k
(X) W (X,s)

|Nk(X)| . It is clear that Wk(X) is greater

than or equal to the number of items in X , denoted as |X |. Furthermore, for
a fully cohesive itemset, Wk(X) = |X |. Therefore, we define cohesion of X in

Nk(X) as Ck(X) = |X|

Wk(X)
. Note that all itemsets containing just one item are

fully cohesive, that is Ck(X) = 1 if |X | = 1. The cohesion of X in a single

sequence s is defined as C(X, s) = |X|
W (X,s) .

In a given class of sequences Sk, we can now define the interestingness of an
itemset X as Ik(X) = Fk(X)Ck(X). Given an interestingness threshold min int,
an itemset X is considered interesting if Ik(X) ≥ min int. If desired, minimum
support and minimum cohesion can also be used as separate thresholds.

Once we have discovered all interesting itemsets in each class of sequences,
the next step is to identify the classification rules we will use to build a classifier.

We define rkm : pm ⇒ Lk as a rule where pm is an interesting itemset
in Sk and Lk is a class label. pm is the antecedent of the rule and Lk is the
consequent of the rule. We further define the interestingness, support, cohesion
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and size of rkm to be equal to the interestingness, support, cohesion and size of
pm, respectively. The confidence of a rule can now be defined as:

conf(pm ⇒ Lk) =
|Nk(pm)|

|N(pm)|
(1)

A rule pm ⇒ Lk is considered confident if its confidence exceeds a given threshold
min conf.

If all items in the antecedent of the rule can be found in the sequence of a
given data object, we say that the rule matches the data object. We say that a
rule correctly classifies or covers a data object in SDB if the rule matches the
sequence part of the data object and the rule’s consequent equals the class label
part of the data object.

In practice, most datasets used in the sequence classification task can be
divided into two main cases. In the first case, the class of a sequence is determined
by certain items that co-occur within it, though not always in the same order.
In this case, a classifier based on sequential patterns will not work well, as the
correct rule will not be discovered, and, with a low enough threshold, the rules
that are discovered will be far too specific. For an itemset of size n, there are n!
orders in which this itemset could appear in a sequence, and therefore n! rules
that could be discovered (none of them very frequent). Our method, however,
will find the correct rule. In the other case, the class of a sequence is determined
by items that occur in the sequence always in exactly the same order. At first
glance, a classifier based on sequential patterns should outperform our method
in this situation. However, we, too, will discover the same itemset (and rule),
only not in a sequential form. Due to a simpler candidate generation process, we
will even do so quicker. Moreover, we will do better in the presence of noise, in
cases when the itemset sometimes occurs in an order different from the norm.
This robustness of our method means that we can handle cases where small
deviations in the sequential patterns that determine the class of the sequences
occur. For example, if a class is determined by occurrences of sequential pattern
abc, but this pattern sometimes occurs in a different form, such as acb or bac, our
method will not suffer, as we only discover itemset {a, b, c}. This means that,
on top of the reduced complexity, our method often gives a higher accuracy
than classifiers based on sequential patterns, as real-life data is often noisy and
sequential classification rules sometimes prove to be too specific. On the other
hand, in cases where two classes are determined by exactly the same items, but in
different order, our classifier will struggle. For example, if class A is determined
by the occurrence of abc and class B by the occurrence of cba, we will not be able
to tell the difference. However, such cases are rarely encountered in practice.

4 Generating Rules and Building Classifiers

Our algorithm, SCII (Sequence Classification Based on Interesting Itemsets),
consists of two stages, a rule generator (SCII RG), which is based on the Apriori
algorithm [1], and two different classifier builders, SCII CBA and SCII MATCH.
This section discusses SCII RG, SCII CBA and SCII MATCH.
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4.1 Generating the Complete Set of Interesting Itemsets

The SCII RG algorithm generates all interesting itemsets in two steps. Due to
the fact that the cohesion and interestingness measures introduced in Section 3,
are not anti-monotonic, we prune the search space based on frequency alone.
In the first step, we use an Apriori-like algorithm to find the frequent itemsets.
In the second step, we determine which of the frequent itemsets are actually
interesting. An optional parameter, max size, can be used to limit the output
only to interesting itemsets with a size smaller than or equal to max size.

Let n-itemset denote an itemset of size n. Let An denote the set of frequent
n-itemsets. Let Cn be the set of candidate n-itemsets and Tn be the set of inter-
esting n-itemsets. The algorithm for generating the complete set of interesting
itemsets in a given class of sequences is shown in Algorithm 1.

Algorithm 1: GeneratingItemsets. An algorithm for generating all
interesting itemsets in Sk.

input : Sk, minimum support threshold min sup, minimum interestingness
threshold min int, max size constraint max size

output : all interesting itemsets Pk

1 C1 = {i|i ∈ Ik}, Ik is the set of all the items which occur in Sk;
2 A1 = {f |f ∈ C1, Fk(f) ≥ min sup};
3 T1 = {f |f ∈ A1, Fk(f) ≥ min int};
4 n = 2;
5 while An−1 6= ∅ and n ≤ max size do

6 Tn = ∅;
7 Cn = candidateGen(An−1);
8 An = {f |f ∈ Cn, Fk(f) ≥ min sup};
9 Tn = {f |f ∈ An, Ik(f) ≥ min int};

10 n++;

11 Pk =
n−1⋃

i=1

Ti;

12 return Pk;

Lines 1-2 count the supports of all the items to determine the frequent items.
Lines 3 stores the interesting items in T1 (note that the interestingness of a
single item is equal to its support). Lines 4-12 discover all interesting itemsets
of different sizes n (n ≥ max size ≥ 2). First, the already discovered frequent
itemsets of size n − 1 (An−1) are used to generate the candidate itemsets Cn

using the candidateGen function (line 7). The candidateGen function is similar
to the function Apriori-gen in the Apriori algorithm [1]. In line 8, we store the
frequent itemsets from Cn into An. Line 9 stores the interesting itemsets (as
defined in Section 3) from An into Tn. The final set of all interesting itemsets in
Sk is stored in Pk and produced as output.

The time cost of generating candidates is equal to that of Apriori. We will
now analyse the time needed to evaluate each candidate. We denote the time
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needed for computing the interestingness of a frequent itemset f with TIk(f). To
get Ik(f), we first need to find a minimal interval W (f, s) of an itemset f in a
sequence s ∈ Sk, whereby the crucial step is the computation of the candidate
intervals W (f, ti) for the time stamps ti at which an item of f occurs. In our
implementation, we keep the set of candidate intervals associated with f in a
list. To find the candidate interval around position ti containing all items of f ,
we start by looking for the nearest occurrences of items of f both left and right
of position ti. We then start reading from the side on which the furthest element
is closest to ti and continue by removing one item at a time and adding the same
item from the other side. This process can stop when the interval on the other
side has grown sufficiently to make it impossible to improve on the minimal
interval we have found so far. When we have found this minimal interval, we
compare it to the smallest interval found so far in s, and we update this value
if the new interval is smaller. This process can stop if we get a minimal interval
which equals to |f |, and then W (f, s) = |f |. Otherwise, W (f, s) equals to the
smallest value in the list of candidate intervals.

Theoretically, in the worst case, the number of candidate intervals that need
to be found can be equal to the length of sequence s, |s|. To find a candidate
interval, we might need to read the whole sequence both to the left and to the
right of the item. Therefore, the time to get a W (f, ti) is O(|s|). So, TIk(f) is
O(|s|2). However, this worst case only materialises if we are computing Ik(f)
when f is composed of all items that appear in s, and even then only if item
appearing at each end of s do not appear anywhere else.

4.2 Pruning the Rules

Once we have found all interesting itemsets in a given class, all confident rules can
be found in a trivial step. However, the number of interesting itemsets is typically
very large, which leads to a large amount of rules. Reducing the number of rules
is crucial to eliminate noise which could affect the accuracy of the classifier, and
to improve the runtime of the algorithm.

We therefore try to find a subset of rules of high quality to build an efficient
and effective classifier. To do so, we use the idea introduced in CMAR [9], and
prune unnecessary rules by the database coverage method.

Before using the database coverage method, we must first define a total order
on the generated rules R including all the rules from every class. This is used in
selecting the rules for our classifier.

Definition 1. Given two rules in R, ri and rj, ri ≻ rj (also called ri precedes
rj or ri has a higher precedence than rj) if:

1. the confidence of ri is greater than that of rj , or
2. their confidences are the same, but the interestingness of ri is greater than

that of rj , or
3. both the confidences and interestingnesses of ri and rj are the same, but

the size of ri is greater than that of rj
4. all of the three parameters are the same, ri is generated earlier than rj.
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We apply the database coverage method to get the most significant subset of
rules. The main idea of the method is that if a rule matches a data object that
has already been matched by a high enough number of higher ranked rules (this
number is defined by a user chosen parameter δ, or the coverage threshold),
this rule would contribute nothing to the classifier (with respect to this data
object). The algorithm for getting this subset is described in Algorithm 2. The
algorithm has 2 main steps. First, we sort the set of confident rules R according
to definition 1 (line 1). This makes it faster to get good rules for classifying.
Then, in lines 2-13, we prune the rules using the database coverage method. For
each rule r in sorted R, we go through the dataset D to find all the data objects
correctly classified by r and increase the cover counts of those data objects (lines
3-7). We mark r if it correctly classifies a data object (line 8). If the cover count
of a data object passes the coverage threshold, its id will be stored into temp

(line 9). Finally, if r is marked, we store it into PR and remove those data
objects whose ids are in temp (lines 10-13). Line 14 returns the new set of rules
PR. In the worst case, to check whether a data object is correctly classified by
r, we might need to read the whole sequence part s of the data object, resulting
in a time complexity of O(|s|).

Algorithm 2: PruningRules. An algorithm for finding the most signifi-
cant subset among the generated rules.

input : training dataset D, a set of confident rules R, coverage threshold δ

output : a new set of rules PR

1 sort R according to Definition 1;
2 foreach data object d in D do d.cover count = 0;
3 foreach rule r in sorted R do

4 temp = ∅;
5 foreach data object d in D do

6 if rule r correctly classifies data object d then

7 d.cover count ++;
8 mark r;
9 if d.cover count >= δ then store d.id in temp;

10 if r is marked then

11 select r and store it into PR;
12 foreach data object d in D do

13 if d.id ∈ temp then delete d from D;

14 return PR;

4.3 Building the Classifiers

Based on the generated rules, we now propose two different ways to build a
classifier, SCII CBA and SCII MATCH.
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SCII CBA. We build a classifier using the rules we discovered after pruning
based on the CBA-CB algorithm (the classifier builder part of CBA [10]). In
other words, we use rules generated in section 4.2 instead of using all the rules
before pruning as the input for CBA-CB. We can also skip the step of sorting
rules in CBA-CB because we have already sorted them in the pruning phase.
However, the total order for generated rules defined in CBA-CB is different from
that given in Definition 1. We use interestingness instead of support and, if the
confidence and the interestingness of two rules are equal, we consider the larger
rule to be more valuable than the smaller rule.

After building the classifier using the CBA-CB method, the classifier is of
the following format: < r1, r2, . . . , rn, default class >, where ri ∈ R, ra ≻ rb
if a < b, and default class is the default class produced by CBA-CB. When
classifying a new data object, the first rule that matches the data object will
classify it. This means that the new data object will be classified into a class
which the consequent of this rule stands for. If there is no rule that matches the
data object, it is classified into the default class.

SCII MATCH. Rather than ranking the rules using their confidence, interest-
ingness and size, we now propose incorporating the cohesion of the antecedent of
a rule in the new data object into the measure of the appropriateness of the rule
for classifying the object. Obviously, we cannot entirely ignore the confidence of
the rules. Therefore, we will first find all rules that match the new object, and
then compute the product of the rule’s confidence and the antecedent’s cohesion
in the new data object. We then use this new measure to rank the rules, and
classify the object using the highest ranked rule.

Considering there may not exist a rule matching the given data object, we
must also add a default rule, of the form null ⇒ Ld, to the classifier. If there
is no rule that matches the given data object, the default rule will be used to
classify the data object. To find the default rule, we first delete the data objects
matched by the rules in PR. Then we count how many times each class label
appears in the remainder of the dataset. Finally we set the label that appears
the most times as the default class label Ld. If multiple class labels appear the
most times, we choose the first one as the default class label. So the default rule
default r is null ⇒ Ld. In the worst case, to check whether a data object is
matched by rule r in PR, we might need to read the whole sequence part s of
the data object. Since we need to do this for all data objects and all rules, the
time complexity of finding the default rule is O(|PR|

∑
s∈D |s|).

The classifier is thus composed of PR and the default rule default r. We
now show how we select a rule for classifying the sequence in a new data object.
The algorithm for finding the rule used to classify a new data object is shown
in Algorithm 3.

First, we find all the rules that match the given data object d and store them
into MR (lines 1). Then, we handle three different cases:

1. (lines 2-7): If the size of MR is greater than 1, we go through MR to
compute the cohesion of each rule in MR with respect to the given data object.
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Algorithm 3: ClassifyingRule. An algorithm for finding the rule used
to classify a new sequence.

input : PR and default r, a new unclassified data object d = (s, L?)
output : the classifying rule rc

1 MR = {r ∈ PR r matches d};
2 if MR.size > 1 then

3 foreach rule r : p ⇒ Lk in MR do

4 if r.length > 1 then r.measure = r.confidence ∗ C(p, d.s);
5 else r.measure = r.confidence;

6 sort rules in MR in descending order by r.measure;
7 return the first rule in sorted MR;

8 else

9 if MR.size == 1 then return the only rule in MR;
10 else return default r;

Let us go back to the cohesion defined in section 3. We use the antecedent of a
rule to take the place of itemset X to compute the cohesion of a rule. We then
compute the value of every rule in MR (the product of the rule’s confidence
and the antecedent’s cohesion), and sort the rules according to their value (the
higher the value, the higher the precedence). We then utilize the first rule in the
sorted MR to classify the given data object.

2. (line 9): If the size of MR is 1, then we classify the sequence using the
only rule in MR.

3. (line 10): If there is no rule in MR, then we use the default rule to classify
the given data object.

The only time-consuming part of Algorithm 3 is the computation of C(p, d.s).
The time complexity of this computation has already been analysed at the end
of Section 4.1.

4.4 Example

To illustrate how our methods work, we will use a toy example. Consider the
training dataset consisting of the data objects (sequences and class labels) given
in Table 1. We can see that itemset abcd exists in all sequences regardless of class.
It is therefore hard to distinguish the sequences from different classes using the
traditional frequent itemset methods. We now explain how our approach works.

Using the definitions given in Section 3 and Algorithm 1, assume min sup
= min int = 2

3 , max size = 4 and make the sequences of class 1 as input S1

in Algorithm 1. First, we discover frequent itemsets in S1, which turn out to
be itemset abcd and all its subsets. Then we generate interesting itemsets from
frequent itemsets, and find itemsets ab, a, b, c and d, whose interestingness is
equal to 1. Meanwhile, in the sequences of class 2, S2, itemsets bcd, cd a, b, c
and d are interesting. If we now set min conf = 0.5, we get the confident rules
sorted using Definition 1, as shown in Table 2.
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Table 1. An example of a sequence dataset

ID Sequence Class Label ID Sequence Class Label

1 c c x y a b d class1 5 a d z z c d b class2
2 a b e e x x e c f d class1 6 b x y d d c d d d x a class2
3 c g h a b d d class1 7 b d c c c c a y class2
4 d d e c f b a class1 8 a x x c d b class2

Table 2. Sorted rules from the example

Rule Cohesion Confidence Rule Cohesion Confidence

a b ⇒ Class1 1.0 0.5 c ⇒ Class2 1.0 0.5
c d ⇒ Class2 1.0 0.5 a ⇒ Class2 1.0 0.5
c ⇒ Class1 1.0 0.5 b ⇒ Class2 1.0 0.5
a ⇒ Class1 1.0 0.5 d ⇒ Class2 1.0 0.5
b ⇒ Class1 1.0 0.5 c b d ⇒ Class2 0.8 0.5
d ⇒ Class1 1.0 0.5 b d ⇒ Class2 0.8 0.5

Given a new input sequence s9 = a x b y c d z, we can see that it is not easy
to choose the correct classification rule, as all rules match the input sequence,
and only the last two score lower than the rest. The first two rules are ranked
higher due to the size of the antecedent, but the CBA, CMAR and SCII CBA
methods would have no means to distinguish between the two rules, and would
classify s9 into class 1, simply because rule a b ⇒ Class1 was generated before
rule c d ⇒ Class2. Using the SCII MATCH method, however, we would re-
rank the rules taking the cohesion of the antecedent in s9 into account. In the
end, rule c d ⇒ Class2 is chosen, as C(cd, s9) = 1, while C(ab, s9) = 2

3 . The
cohesion of all antecedents of size 1 in s9 would also be equal to 1, but rule
c d ⇒ Class2 would rank higher due to its size. We see that the SCII MATCH
method classifies the new sequence correctly, while other methods fail to do so.

5 Experiments

We compared our classifiers SCII CBA and SCII MATCH with five classifiers:
CBA, CMAR, BayesFM [8] and CBS [13]. The CBS paper proposes a number
of different scoring functions [13], and we chose the length policy as it gave
the best results. For better comparison, we also added a max size constraint
into the pattern mining stage of CBS. Our methods, BayesFM and CBS are
implemented in Java of Eclipse IDE, while CBA and CMAR are implemented
in LUCS-KDD Software Library3. We use SPADE [16] to mine subsequential
patterns for BayesFM and CBS and we transform the sequence dataset into a
transaction dataset for CBA and CMAR. All experiments are performed on a

3 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/



12

laptop computer with Intel i7 (2 CPUs 2.7GHz), 4GB memory and Windows 7
Professional.

In order to evaluate the proposed methods, we used four real-life datasets.
Three of these datasets were formed by making a selection from the Reuters-
21578 dataset4, consisting of news stories, assembled and indexed with categories
by Reuters Ltd personnel. We consider the words appearing in the texts as items
and treat each paragraph as a sequence. We formed the Reuters1 dataset using
the two biggest classes in the Reuters-21578 dataset, ”acq” (1596 paragraphs)
and ”earn” (2840 paragraphs). Reuters2 consists of the four biggest classes in
Reuters-21578, ”acq”, ”earn”, ”crude” (253 paragraphs) and ”trade” (251 para-
graphs), and is therefore an imbalanced dataset. Reuters3 is a balanced dataset
obtained from Reuters2 by keeping only the first 253 paragraphs in the top two
classes. Reuters1 consists of 4436 sequences composed of 11947 different items,
Reuters2 of 4940 sequences containing 13532 distinct items, and Reuters3 of
1010 sequences composed of 6380 different items.

Our fourth dataset is a protein dataset obtained from PhosphoELM5. The
data consists of different combinations of amino acids for each kind of protein. We
chose two of the biggest protein groups (PKA with 362 combinations and SRC
with 304 combinations) to form the Protein dataset. We treat each combination
of amino acids as a sequence and consider each amino acid as an item. Each
sequence is labelled by the protein group it belongs to. This dataset consists of
666 sequences containing 20 different items. All the reported accuracies in all of
experiments were obtained using 10-fold cross-validation.

5.1 Analysis of the Predictive Accuracy

Table 3 reports the accuracy results of all six classifiers. In the experiments, we
set min conf to 0.6 and min sup to 0.1 for all of the classifiers, while varying the
max size threshold. Additionally, we set min int to 0.05 for the SCII classifiers.
For the SCII methods and CMAR, the database coverage threshold was set to
3. The best result for each dataset is highlighted in bold. As shown in Table 3,
the SCII algorithms generally outperform other classifiers.

To further explore the performance of the six classifiers, we conducted an
analysis of the predictive accuracy under different support, confidence, and in-
terestingness thresholds, respectively. We first experimented on Reuters1 and
Protein, with min conf fixed at 0.6, max size set to 3 and min int for SCII clas-
sifiers set to 0.05. We can see in Fig. 1 that the SCII C classifier is not sensitive
to the minimum support thresholds as minimum interestingness threshold is the
main parameter deciding the output rules. As the number of output rules drops,
SCII M begins to suffer, as it picks just the highest ranked rules to classify a new
object. SCII C compensates by using a combination of rules, and the accuracy
therefore does not suddenly drop once some rules drop out of the classifier.

4 http://web.ist.utl.pt/~acardoso/datasets/r8-train-stemmed.txt
5 http://phospho.elm.eu.org/
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Table 3. Comparison of Predictive Accuracy (%)

Dataset max size SCII C SCII M CBA CMAR BayesFM CBS

Reuters1 2 92.74 92.54 67.05 65.76 92.38 89.27
3 92.74 92.54 66.63 65.65 92.88 88.12
4 92.74 92.54 66.63 65.54 92.79 88.25
5 92.74 92.54 66.63 65.54 92.76 88.82
∞ 92.74 92.54 66.63 65.54 92.72 88.88

Protein 2 86.63 87.56 81.34 81.91 52.66 54.92
3 87.69 88.59 86.55 80.88 72.97 74.94
4 91.01 90.71 87.93 78.64 85.14 86.81
5 90.71 91.73 89.14 78.94 85.14 86.96
∞ 90.56 91.86 89.14 78.94 85.14 86.96

Reuters2 2 90.40 90.16 57.69 57.45 83.68 78.87
3 90.51 90.22 57.65 57.17 83.22 75.99
4 90.67 90.28 57.65 57.09 82.94 74.31
5 90.75 90.26 57.65 57.09 82.87 72.96
∞ 90.61 90.45 57.65 57.09 82.82 72.11

Reuters3 2 92.48 92.97 78.61 62.28 78.71 87.82
3 92.28 92.87 78.71 62.38 74.16 88.22
4 92.87 92.67 78.71 62.38 72.57 87.92
5 92.77 92.97 78.71 62.38 72.18 87.52
∞ 93.07 92.77 78.71 62.38 71.98 86.73
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Fig. 1. The impact of varying the support threshold on various classifiers

We then compared the predictive accuracy of the classifiers using different
minimum confidence thresholds on the Protein dataset. We compare just four
classifiers of the classifiers, as BayesFM and CBS do not use a confidence thresh-
old. Here, min sup is fixed at 0.1, max size is set to 3 and min int for the
SCII classifiers is set to 0.05. From Fig. 2, we can see that the SCII classifiers
are not sensitive to the minimum confidence threshold at all. When the confi-
dence threshold is not lower than 0.8, the accuracies of CBA and CMAR decline
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sharply. It shows the performance of CBA and CMAR is strongly related to the
number of produced rules.
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Fig. 2. The impact of varying the confi-
dence threshold on various classifiers
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Fig. 3. The impact of varying the interest-
ingness threshold on the SCII classifiers

Fig. 3 shows the accuracy of the SCII classifiers on the Reuters2 dataset
with different minimum interestingness thresholds. Here, min sup is fixed at 0.1,
min conf at 0.6, and max size is set to 3. We can see that the accuracies of
both SCII C and SCII M decrease when the minimum interestingness threshold
increases. When the minimum interestingness threshold is greater than 0.2, fewer
rules are discovered, and the accuracy of SCII M, once again, declines faster than
that of SCII C. We can conclude that the selection of good classification rules
is already done using the support and confidence threshold, and there is no
need to prune further with the interestingness threshold. The interestingness
of an itemset, however, remains a valuable measure when ranking the selected
classification rules.

5.2 Analysis of the Scalability for Different Methods

Fig. 4 shows the performance of the six classifiers on Reuters1 and Protein for
a varying number of sequences (#sequences). We start off by using just 10% of
the dataset, adding another 10% in each subsequent experiment. In Reuters1 the
number of items (#items) increases when #sequences increases, while #items

is a fixed number in Protein, as there are always exactly 20 amino acids. In this
experiment we set min int = 0.01 for SCII, max size = 3 and min conf = 0.6
for all methods.

The first two plots in Fig. 4 show the effect of an increasing dataset size on
the run-times of all six algorithms. We began with a small subset of Reuters1,
adding further sequences until we reached the full dataset. We plot the runtimes
compared to the number of sequences, and the number of different items en-
countered in the sequences. For all six algorithms, the run-times grew similarly,
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Fig. 4. Scalability analysis

with the classifiers based on sequential patterns the slowest, and the classifiers
that took no sequential information into account the fastest.

The last two plots show the run-times of the algorithms on the Protein
dataset. Here, too, we kept increasing the dataset size, but the number of items
was always equal to 20. We performed the experiments with two different sup-
port thresholds, and it can be noted that classifiers based on sequential patterns
are much more sensitive to the lowering of the threshold than our two classifiers.
Once again, as expected, CMAR and CBA were fastest, but as was already seen
in Table 3, their accuracy was unsatisfactory.

6 Conclusions

In this paper, we introduce a sequence classification method based on interesting
itemsets named SCII with two variations. Through experimental evaluation, we
confirm that the SCII methods provide higher classification accuracy compared
to existing methods. The experimental results show that SCII is not sensitive to
the setting of a minimum support threshold or a minimum confidence threshold.
In addition, the SCII method is scalable as the runtime is proportional to the
dataset size and the number of items in the dataset. Therefore, we can conclude
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that SCII is an effective and stable method for classifying sequence data. What is
more, the output rules of SCII are easily readable and understandably represent
the features of datasets.
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