
Linear Space Direct Pattern Sampling using
Coupling From The Past

Mario Boley
Fraunhofer IAIS and
University of Bonn

mario.boley@iais.fhg.de

Sandy Moens
University of Antwerp

sandy.moens@ua.ac.be

Thomas Gärtner
Fraunhofer IAIS and
University of Bonn

thomas.gaertner@iais.fhg.de

ABSTRACT
This paper shows how coupling from the past (CFTP) can be
used to avoid time and memory bottlenecks in direct local
pattern sampling procedures. Such procedures draw con-
trolled amounts of suitably biased samples directly from the
pattern space of a given dataset in polynomial time. Previ-
ous direct pattern sampling methods can produce patterns in
rapid succession after some initial preprocessing phase. This
preprocessing phase, however, turns out to be prohibitive in
terms of time and memory for many datasets. We show how
CFTP can be used to avoid any super-linear preprocessing
and memory requirements. This allows to simulate more
complex distributions, which previously were intractable.
We show for a large number of public real-world datasets
that these new algorithms are fast to execute and their pat-
tern collections outperform previous approaches both in un-
supervised as well as supervised contexts.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—Data Mining

Keywords: Local patterns, Sampling, CFTP, Frequent sets

1. INTRODUCTION
This paper presents a unified sampling algorithm for ef-

ficiently drawing local patterns [11] directly from the pat-
tern space of a given input dataset. Traditionally, local
pattern discovery problems are often addressed by branch-
and-bound search algorithms (e.g., for association discovery
[16] or subgroup discovery [10]). These methods allow to
exhaustively inspect a high-frequency fraction of the pat-
tern space that is limited by the available computation time
and sometimes memory (e.g., for best-first-search priority
queues or candidate pruning). This can be problematic for
two reasons: 1) Although it is reasonable to prune patterns
of very low frequency, for the remaining patterns, frequency
is not generally a good ranking criterion. 2) There is a high
level of redundancy among the contained patterns, i.e., all
local phenomena are approximately described by many al-
ternative descriptions. While both factors seem to make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$10.00.

the discovery task very hard, in particular the redundancy
allows random pattern collections to perform robustly and
well in many applications. For instance, suppose we are in-
terested in combinations of low-frequency singletons (items)
that have a relatively high conjunctive frequency. Then, in-
stead of exhaustively listing a huge part of the pattern space,
it can be much more efficient to just draw a small number
of patterns according to a distribution F with, e.g.,

F (F) = frq2(F)
∏
e∈F

(1− frq({e})) . (1)

Direct pattern sampling refers to the idea of drawing such
random collections directly from the pattern space—in poly-
nomial time without physically materializing auxiliary parts
of the space (see Figure 1(a)).

1.1 Two-step Direct Pattern Sampling
Many instances of direct pattern sampling can be realized

by a simple two-step random procedure, which is a gener-
alization of several previous algorithms for specific distribu-
tions [4]. The procedure is applicable if the desired distribu-
tion can be expressed as a product of singleton prior weights
and a small number of factors based on variants of frequency.
For the example given in Eq. (1) this holds because it con-
sists of two frq-factors and multiplicative singletons weights
b(e) = 1−frq({e}). Many other variants are possible, includ-
ing products of area, lift, disjunctive frequency, various dis-
criminativity measures, and additive singleton weights (see
Section 3). The two-step approach can be outlined as follows
(see also Figure 1(b)):

Step 1 draw from the input data a tuple of data records
of dimensionality equal to the number of frequency
factors (with probability proportional to the total prior
weight of all patterns it contains); and

Step 2 draw a pattern contained in that tuple according to
the prior weights.

For the example of Eq. (1), Step 1 corresponds to draw-
ing a pair of data records (D1, D2) according to the total
multiplicative pattern weight

w(D1, D2) =
∑

F⊆(D1∩D2)

∏
e∈F

(1− frq({e})) .

Step 2 corresponds to drawing a pattern F supported by
both, D1 and D2, according to

∏
e∈F (1− frq({e})).

In contrast to the cited branch-and-bound algorithms or
earlier approaches to pattern sampling based on Markov

(a) direct pattern sampling (b) two-step sampling framework

Figure 1: Direct pattern sampling (a) means to directly materialize a set of random patterns from input data
wrt to a distribution that favors useful patterns. Two-step sampling (b) is an approach to direct pattern
sampling for distributions that are a product of c (negative) frequency factors: in Step 1 a tuple of c data
records is drawn and in Step 2 a pattern is generated that is (not) supported by all elements of that tuple.

chain Monte Carlo [1, 3, 5], this two-step sampling frame-
work can be implemented as a proper polynomial time algo-
rithm. However, the direct (enumerative) implementation
of Step 1 requires the availability of the weights w of all
tuples of data records. Generally, for c frequency factors
this corresponds to a data structure of size |D|c, which has
to be constructed in a pre-processing phase. Depending on
the available hardware, this renders distributions with two
factors already infeasible for datasets with between 104 and
105 data records. Distributions with three factors are only
feasible for very small datasets of at most a few 100 records.

1.2 Outline and Contributions
In this paper we substantially push the limits of the dis-

tributions one can practically simulate by replacing the enu-
merative implementation of Step 1 by an indirect approach
based on coupling from the past1 (CFTP [13, 18]; Sections 2
and 4). This allows to omit any super-linear preprocessing
and memory requirements. Without this bottleneck a much
wider range of datasets becomes accessible for simulating
distributions with two factors and even with three and four
factors. This is demonstrated empirically with 47 public
real-world datasets. For many distributions we also show a
theoretical polynomial upper bound on the expected running
time. To fully utilize the power of this new algorithm, we lift
the two-step sampling idea to a general framework and in-
stantiate it with 17 different distributions based on pattern
frequency, area, rare singletons, and label discriminativity
(Section 3). We evaluate these distributions in both, an un-
supervised context based on the compression-based pattern
selector Krimp [19] and a supervised context based on a
selection measure used in pattern-based classification (e.g.,
[6]). Our experiments show that the distributions that are
enabled by the techniques of this paper, are indeed valuable
for discovering patterns of greater utility: they outperform
previously available distributions as well as top-k frequent
closed set mining by a wide margin.

1See http://www-kd.iai.uni-bonn.de/index.php?page=software.

2. PRELIMINARIES
Before we present the technical contributions of the paper,

we give a comprehensive summary of local pattern discovery
and CFTP. Also we fix some basic notational conventions.
We denote random variables by boldface letters, e.g., r, and
distributions by stylized letters, e.g., d : Ω → [0, 1]. The
uniform distribution on Ω is denoted u[Ω]. For the most
part we are interested in finite domains Ω. In this case,
we are identifying distributions with row vectors, and, as
a convention, for a set of positive weights w : Ω → R+ we
denote by w the distribution on Ω resulting from normal-
izing the weights w, i.e., w(x) = w(x)/

∑
x′∈Ω w(x′). For

two distributions d , d ′ on finite Ω we denote by ‖d , d ′‖tv =
1/2

∑
x∈Ω |d (x) − d ′(x)| the total variation distance be-

tween d and d ′. When extending real-valued functions—in
particular weight and probability functions—to sets, we in-
terpret them additively, i.e., w(Ω′) =

∑
x∈Ω′ w(x) for Ω′ ⊆

Ω. For the image set of arbitrary functions f with domain
X we write img(f) = {f(x) : x ∈ X}. The power set of a
set X is denoted P(X).

2.1 Local Pattern Discovery
A binary dataset D over some finite set E of singletons

(items) is a bag (multiset) of sets, called data records,
D1, . . . , Dm each of which is a subset of E. The size of
D, denoted by ‖D‖, is defined as the sum of all its data
record sizes

∑
D∈D = |D|. For a given dataset D over E, the

pattern space (or pattern language) L(D) considered in
this paper is the family of non-empty non-singleton subsets
of E, i.e., L(D) = {F ⊆ E : |F | ≥ 2}. The elements of L are
interpreted conjunctively. That is, the local data portion
described by a set F ⊆ E, called the support (set) of
F in D and denoted D[F], is defined as the multiset of all
data records from D that contain all elements of F , i.e.,
D[F] = {D ∈ D : D ⊇ F}.

We recap some basic measures of pattern utility that we
use in this paper. The most fundamental measures for set
patterns are the support (count), i.e., the size of its sup-
port set supp(D, F) = |D[F]|, and the frequency, i.e., the

relative size of its support with respect to the total number of
data records frq(D, F) = |D[F]| / |D|. Correspondingly, we
define the negative support and the negative frequency
as supp(D, F) =

∣∣D[F]
∣∣ and frq(D, F) =

∣∣D[F]
∣∣ / |D|, respec-

tively, where D[F] = D\D[F] denotes the complement of the
support set of F . A further measure considered here is the
area function [9] area(D, F) = |F | |D[F]|. In some applica-
tion contexts, e.g., subgroup discovery or emerging pattern
mining [7], each data record D ∈ D has an associated class
label l(D) ∈ {⊕,	}. We denote by Dl ∈ {⊕,	} the data
portion labeled l, i.e., Dl = {D ∈ D : l(D) = l}. For such
datasets we consider as a representative utility measure the
information gain, which is defined by

ig(D, F) = H(D)− frq(D, F)H(D[F])− frq(D, F)H(D[F])

where for a data portion D′ ⊆ D

H(D′) = −
∑

l∈{⊕,	}

∣∣D′l∣∣ / ∣∣D′∣∣ log
∣∣D′l∣∣ / ∣∣D′∣∣

is the entropy of the label distribution associated with D′.
Note that all concepts discussed here can be easily extended
to the case of more than two classes.

2.2 Coupling From The Past
Coupling from the past is a technique to acquire a sample

from a distribution d on some domain Ω without explicitly
constructing it. It is based on an indirect simulation of a
Markov chain on Ω with a state distribution that converges
to d . Within the two-step sampling framework of this paper,
it is used to efficiently implement Step 1.

A (time-homogeneous) Markov chain on finite state space
Ω is a discrete time random process that can be specified by
a stochastic state transition matrix P ∈ [0, 1]Ω×Ω. The
chain is called ergodic if for all x, y ∈ Ω there is a num-
ber t0 ∈ N of steps such that for all t > t0 it holds that
P t
x,y > 0 (P t

x,y is equal to the probability of going from x
to y in t steps). An ergodic Markov chain has a station-
ary distribution, i.e., a distribution d : Ω → [0, 1] with
dP = d , that it converges to, i.e., for all distributions d ′

limt→∞ ‖d ′P t, d‖tv = 0. Given a desired target distribu-
tion d on Ω, a Markov chain with stationary distribution
d can be constructed by using as transition procedure the
Metropolis-Hastings algorithm [12]: in a current state x
propose a successor state y with some proposal distribution
qx : Ω → [0, 1] and then accept the proposal y as the new
current state if u ≤ (d (y)qy(x))/(d (x)qx(y)) with uniform
u ∼ u[[0, 1)] and otherwise keep x as current. The resulting
transition probabilities are

Px,y = qx(y) min

(
d (y)qy(x)

d (x)qx(y)
, 1

)
(2)

if qx(y) > 0 and 0 otherwise. If the Markov chain described
by P is ergodic the stationary distribution is the desired d .

In order to acquire a sample of the stationary distribution
one needs an efficient single step simulation algorithm that
computes a random transition map φ(·, r) : Ω→ Ω with
a suitable random variable r such that

∀x, y ∈ Ω, P[φ(x, r) = y] = Px,y . (3)

One way of sampling is then to run a forward simulation
for t time steps from some starting state x0, i.e., to compute
(φ(·, rt) ◦ · · · ◦ φ(·, r1))(x0) where the ri are i.i.d. copies of

r. This is what is commonly referred to as Markov chain
Monte Carlo method. Disadvantages of this approach are
that it yields only approximate samples of d and that it is
hard to come up with good a priori bounds for the required
number of steps t. Coupling from the past (CFTP) is an
alternative method that avoids these drawbacks. It is based
on backward simulations defined by Φi = Φi−1 ◦ φ(·, ri)
for i > 0 and Φ0(x) = x. The crucial insight is: if for some
t > 0 it holds that Φt is a constant function, i.e.,

img(Φt) = {x} (4)

then x must be an observation of the stationary distribution
(P[x = x] = d (x)). This event is referred to as coalescence.
Intuitively we can consider the backward simulation to be
running already since infinitely far in the past, hence the cur-
rent state is distributed according to d , but for determining
the current state no information beyond the time horizon
t is required. This is because Eq. (4) corresponds to the
event that all possible realizations of the Markov chain agree
in their current state (using all possible starting states but
fixing the source of randomness for state transition). The
CFTP protocol checks Eq. (4) for Φt in exponentially in-
creasing epochs, i.e., t = 2i for i = 1, 2, The challenge
is how to efficiently compute img(Φt). Naively keeping track
of all realizations would diminish any advantage over enu-
merative sampling (explicitly constructing Ω). Sec. 4 shows
how this can be achieved for our specific sampling task.

3. TWO-STEP DIRECT SAMPLING
In this section we present a general form of the two-step

sampling framework and show how it can be instantiated
to simulate various distributions relevant to local pattern
discovery.

3.1 Distributions
Given an input dataset D over E, the framework can be

used to sample according to distributions F : L(D) → [0, 1]
that can be expressed in the following product form:

F (F) = b?(F)

c∏
i=1

qi(Di, F)/Z (5)

where Z is a normalizing constant, qi ∈ {supp, supp} are
support resp. negative support measures for some specific
portions of the input data Di ⊆ D, and b? : P(E) → R+ is
a weight function based on positive singleton prior weights
b : E → R+ that are interpreted either multiplicative or
additive, i.e., b?(F) = ?e∈F b(e) with ? ∈ {Π,Σ}.

Out of the many possible distributions that can be rep-
resented with Eq. (5), in this paper, we consider 17 repre-
sentative examples with between one and four factors. The
distributions can be categorized into four groups, each of
which has a base-case with one or two factors, respectively.
Distributions with a greater number of factors result then
from multiplying the base-case with more frequency-factors.
The groups are:

Frequency with base-case Ffrq(F) = frq(D, F)/Z by set-
ting q1 = supp, D1 = D, b(e) = 1, and ? = Π (creating
uniform priors b?(·) = 1); and distributions Ffq2 , Ffq3 ,
Ffq4 by setting factors accordingly.

Area with base-case Farea(F) = area(D, F)/Z by setting
q1 = supp, D1 = D, b(e) = 1, and ? = Σ; and dis-
tributions Far·fq, Far·fq2 , Far·fq3 .

Algorithm 1 Two-Step Sampling Framework

Require: data portions D1, . . . ,Dc of input data D over E,
measures q1, . . . , qc ∈ {supp, supp},
singleton weights b : E → R+ and ? ∈ {Π,Σ}

Returns: random pattern F ∼ F as in Eq. (5)

1. draw tuple ~D ∼ w : D→ [0, 1] with weights

w(~D) = b?(I(~D))− b?(L(~D))

2. draw result pattern F ∼ b′? : L → [0, 1] with

b′?(F) =

{
b?(F) , if F ∈ I(~D) and |F | ≥ 2

0 , otherwise

Rare containing the example from the introduction with
base-case Frare(F) = frq(D, F)

∏
e∈F frq(D, {e})/Z by

setting q1 = supp, D1 = D, b(e) = frq(D, {e}) and
? = Π; and distributions Frr·fq, Frr·fq2 , Frr·fq3 .

Discriminativity containing distributions biased towards
patterns with a high label discriminativity with base-
case Fdscr(F) = frq(D⊕, F)frq(D	, F) by q1 = supp,
q2 = supp, D1 = D⊕, D2 = D	; and distributions Fdr·fq
and Fdr·fq2 as well as distributions resulting from mul-
tiplying with frequency within the positively labeled
data, i.e., Fdr·fq+ and Fdr·fq2+

.

Note that, while enumerating patterns in descending order
of utility is NP-hard for the underlying measures of the area
and the discriminativity group, using them as a bias for
random pattern collections is possible in polynomial time
using the sampling framework presented below.

3.2 Algorithm
The underlying idea of the algorithm follows a simple in-

tuition: a pattern (not) supported by a random data record
is likely to be (not) supported by many data records alto-
gether. This principle can be further extended by consid-
ering patterns that are simultaneously (not) supported by
independent data records drawn from the respective data
portions. Algorithmically this can be realized in two steps:
Step 1 is to draw a tuple of data records from the Cartesian
product of the c data portions and then Step 2 is to draw a
pattern compatible with the complete tuple according to its
weight b?. Note that in Step 1 the tuple must be sampled
according to the total weight of patterns compatible with it.

In order to precisely formalize this approach, let us intro-
duce some further notation. We denote by D = ×c

i=1Di the
data product, i.e., the set of all tuples that can be drawn in
Step 1. Moreover, let P ⊆ {1, . . . , c} be the set of positive
indices, i.e., i ∈ {1, . . . , c} with qi = supp and correspond-
ingly N the set of negative indices, i.e., j ∈ {1, . . . , c}
with qj = supp. Then a pattern F ∈ L is compatible with

a tuple ~D ∈ D if it satisfies all support requirements, i.e.,
F ⊆ ~D(i) for all i ∈ P and F 6⊆ ~D(j) for all j ∈ N . We refer

to the family of all patterns compatible with a tuple ~D as
the patterns induced by ~D and denote it I(~D)

= {F ⊆ E : (∀i ∈ P, F ⊆ ~D(i)) ∧ (∀j ∈ N,F 6⊆ ~D(j))} .

Finally let us denote the induced non-pattern sets by a
~D ∈ D as L(~D) = {F ∈ I(~D) : |F | ≤ 1}. With this we

can express the weights w : D→ R+ according to which the
tuples must be sampled in Step 1 as

w(~D) = b?(I(~D))− b?(L(~D)) .

The complete sampling procedure is summarized in the for-
mal pseudo-code given in Alg. 1. Before we turn to the
efficiency of the algorithm we first note its correctness.

Proposition 1. Given data portions D1, . . . ,Dc ⊆ D,
q1, . . . , qc ∈ {supp, supp}, singleton weights b : E → R+ and
? ∈ {Π,Σ}, Algorithm 1 returns a random pattern F ∈ L(D)
according to F as specified in Equation (5).

Proof. We show that every pattern F ∈ L has the cor-
rect marginal probability with respect to the joint distribu-
tion of all pairs of inducing tuples and patterns drawn in
line 1 and 2 of the algorithm, respectively. Let us denote by
I−(F) = { ~D ∈ D : F ∈ I(~D)} the inverse induces-relation.
Then we have

P[F = F] =
∑
~D∈D

P[~D = ~D,F = F]

=
∑

~D∈I−(F)

w(~D)

Z

b?(F)

w(~D)

=
∣∣∣{ ~D ∈ D : F ∈ I(~D)}

∣∣∣ b?(F)/Z

= b?(F)

c∏
i=1

qi(Di, F)/Z = F (F)

with Z =
∑

~D∈D b
′
?(I(~D)) being the sum of all prior weights

of patterns among all inducing tuples.

3.3 Implementation
We now describe how Algorithm 1 can be implemented

efficiently. Step 1 requires to sample a tuple according to
its weight. Since there are at most |D|c inducing tuples,
for some datasets this can be done enumeratively, i.e., by
constructing a list of all weights w(~D1), . . . , w(~Dmc), draw a

random real u ∼ u[[0, 1)] and then return the unique ~Di ∈ D

with
∑k−1

i=1 w(~Di) ≤ u <
∑k

i=1 w(~Di). This is what we refer
to as the enumerative baseline for Step 1 [4]. In Section 4
we present a much more effective realization based on CFTP.
However, both approaches require a method to efficiently
compute the weights w. By the inclusion-exclusion formula

b?(I(~D)) =

b?(P(∩
i∈P

~D(i))) +
∑
∅6=I⊆N

(−1)|I|b?(P(∩
j∈I∪P

~D(j))) (6)

the total weight of the family of patterns induced by some
tuple ~D can be reduced to computing the total weights of
power sets P(S) with S ⊆ E. This is independent of the
choices of ?. Computing the total weight of all subsets of a
set S ⊆ E differs based on whether we have multiplicative
or additive weights. For multiplicative weights we can use

bΠ(P(S)) =
∏
s∈S

(1 + b(e)) (7)

and for additive weights the formula is

bΣ(P(S)) = bΣ(S)2|S|−1 . (8)

Both can be shown straightforwardly by induction on |S|.
Note that although the evaluation of Equation 6 requires

Algorithm 2 Sequential Step 2

Require: tuple ~D ∈ D,
Returns: random pattern F ∼ b′? as in Step 2 of Alg. 1

1. X ← {}, Y ← {}
2. for e ∈ E do
3. with prob. PF∼b′? [e ∈ F |X ⊆ F , Y ∩ F = ∅]

set X ← X ∪ {e}; otherwise set Y ← Y ∪ {e}
4. return X

the evaluation of 2|N| terms, this does not pose a problem
for the small values of c ≥ |N | we are usually interested in.

For the implementation of Step 2 we need to sample a
pattern according to b′?, i.e., a pattern F according to b?(F)

that is compatible with ~D drawn in Step 1. As a single tu-
ple can induce 2|E| patterns, enumerative sampling is not an
option for this step even for small datasets. Instead one can
use the following sequential selection process on the single-
tons e ∈ E that keeps track of the set X of already selected
and the set Y of already considered but discarded singletons
(see Alg. 2): As long as one can find a singleton e 6∈ (X∪Y),
add it to the current solution X with probability

P
F∼b′?

[e ∈ F |X ⊆ F , Y ∩ F = ∅] (9)

or add it to Y otherwise. In order to compute these proba-
bilities, let IX,Y (~D) = {F ∈ I(~D) : X ⊆ F ∧ Y ∩ F = ∅}
denote all sets induced by a tuple ~D that contain X and
are disjoint with Y . With this we can express Eq. (9) as

b?(IX+e,Y (~D))/b?(IX,Y (~D)) for the case that |X| ≥ 2. For
the cases when the current solution X contains only one or
no element the expression has to be modified slightly: in
order to avoid generating singletons or the empty set, their
b?-values have to be subtracted from the above expression.

Finally, it remains to compute the expression b?(IX,Y (~D)).
This can be reduced to Equations (7) and (8) for the weight

computation by constructing record tuples ~DX,Y such that

IX,Y (~D) = {F ∪X : F ∈ I(~DX,Y)}:

~DX,Y (i) =

{
∅ , if i ∈ N and X 6⊆ ~D(i)
~D(i) \ (X ∪ Y) , otherwise

.

Then we can re-write b?(IX,Y (~D)) based on the choice of ?

as either bΠ(IX,Y (~D)) = bΠ(X)bΠ(~DX,Y) or bΣ(IX,Y (~D)) =∣∣∣I(~DX,Y)
∣∣∣ bΣ(X) + bΣ(~DX,Y).

4. LINEAR SPACE SAMPLING
In this section we present a CFTP-based implementation

of Step 1 of the two-step sampling framework. After devel-
oping the algorithm, we show that it is applicable to a wide
range of real-world datasets for pattern distributions based
on 2, 3, and even 4 factors.

4.1 CFTP Algorithm
In order to design a CFTP algorithm for sampling tuples

~D ∼ w we have to construct a Markov chain on the data
product D with stationary distribution w . Moreover, this
chain must have a corresponding random transition function
that allows us to efficiently compute backward simulations
and to detect coalescence (Eq. (4)). The right stationary dis-
tribution can be achieved by using the Metropolis-Hastings

Algorithm 3 CFTP Step 1

Require: i.i.d. ~Ct,ut ∼ w × u[[0, 1)] with w as in (11),

Returns: tuple ~D ∼ w as in Step 1 of Alg. 1

1. i← 1, ~D ←⊥
2. while ~D =⊥ do
3. i← i+ 1
4. for t = 2i, . . . , 0 do

5. if ut ≤ w(~D)

w(~D)

w(~Ct)

w(~Ct)
then ~D ← ~Ct //with w(⊥)

w(⊥)
= 1

6. return ~D

construction (Eq. (2)) where on has the freedom of choosing
a state proposal function. For this choice, we construct an
upper bound of the weight function w, which results in a
Markov chain that can be used efficiently within CFTP.

We start with the following state-transition specification
(which is a simplified form of Eq. (2)): from a current state
~D ∈ D propose a new state ~C ∈ D based on some suitable
proposal probability potential q : D → R+ and accept this
proposal if

u ≤ w(~C)q(~D)

w(~D)q(~C)

where u ∼ u[[0, 1)]. That is, independently of the current
state, we have a single probability function q : D → [0, 1]
for proposing the next state. Moreover, we will construct q
such that it is strictly positive, i.e., q(~C) > 0 for all ~C ∈ D.
Besides guaranteeing ergodicity of the Markov chain, this
allows efficient coalescence monitoring. In order to discuss
this, consider the representation of the chain by a random
transition function φ(·, r)—as specified in Eq. (3). With the
above construction this is given naturally by letting r =
(~C,u) be a pair of a proposed state and a unit random real
for checking acceptance. Suppose one knows a lower bound
l on min~D∈D q(

~D)/w(~D). Then detecting coalescence, i.e.,
checking |img(Φt)| = 1, can be done by the implication

ui ≤ l
w(~Ci)

q(~Ci)
⇒
∣∣∣img(φ(·, (~Ci,ui)))

∣∣∣ = 1 (10)

for i ∈ {t, . . . , 1}, because the left-hand side implies that

after applying φ(~D, (~Ci,ui)) all possible chain realizations

coalesce to ~Ci independent of their current state ~D. A natu-
ral choice to achieve this is using the uniform distribution for
proposal, i.e., to set q = u[D]. It can be efficiently simulated
and finding the lower bound l then boils down to finding an
upper bound to max~D∈D w(~D), which can be done efficiently
for many relevant choices of the final pattern distribution F .

However, one can improve this choice of the proposal prob-
abilities in a way that—besides allowing efficient backward
simulation and coalescence monitoring—also improves the
expected coalescence time substantially. Suppose an upper
bound to the weight function w is used for proposing new
tuples in the CFTP algorithm, i.e., setting q(·) = w(·) with

w(~D) ≥ w(~D) for all ~D ∈ D. Then the lower bound l
that is used in Eq. (10) becomes 1 by construction. On
the one hand, we want an upper bound that is as tight as
possible in order to maximize the coalescence probability—
and consequently to minimize the computation time. On
the other hand, we need a proposal function that we can
efficiently compute and use for sampling. The following def-

Figure 2: Order in which the elements of the infi-
nite random string (ri)i∈N are materialized by Alg. 3.
The time horizon is doubled in every epoch. Only
seed of random sequence (si)i∈N has to be stored to
efficiently re-construct earlier materialized ri.

inition achieves the latter while at the same time provides
good coalescence probabilities in theory and in practice (see
Section 4.2):

w(~D) =

c∏
i=1

c

√
wi(~D(i)) (11)

where wi : Di → R+ defined by

wi(D) =

{
b?(P(D))−b?(L(D)) , for i ∈ P
b?(P(E) \ P(D))−b?(L(D)) , for i ∈ N

are component-wise weight functions. The wi upper bound
w in the following sense: for all tuples ~D with ~D(i) = D we

have wi(D) ≥ w(~D). This follows from b? being positive and

P(~D(i)) ⊇ I(~D) for i ∈ P as well as P(E)\P(~D(j)) ⊇ I(~D)
for j ∈ N . Hence, we also have for their geometric mean
w(~D) ≥ w(~D) as desired. Also, simulating ~C ∼ w can be

done efficiently by drawing ~C(i) according to wi indepen-
dently per component. Implementing this enumeratively is
not a problem, because the number of required weights are
linear in the input and have to be computed only once.

This concludes the specification of our instantiation of
CFTP. All ideas are summarized in the pseudo-code of Alg. 3
and in the proof of the following correctness statement.

Proposition 2. With probability 1 Algorithm 3 termi-
nates and returns a tuple drawn according to w .

Proof. Suppose the algorithm terminates with final val-
ues of i and ~D equal to i∗ and ~D∗, respectively. In this case
the if-condition in line 5 was true for some value t∗ of t when
~D = ⊥. Then

ut∗ ≤ 1 · w(~Ct∗)

w(~Ct∗)
≤ w(~B)

w(~B)

w(~Ct∗)

w(~Ct∗)

for all ~B ∈ D because w is an upper bound to w, hence,
w(~B)/w(~B) ≥ 1. It follows that in this iteration Alg. 3

correctly computes img(φ(D, (~Ct∗ ,ut∗)) = { ~Ct∗}. For t <

t∗ the inner loop correctly computes φ(~D, (~Ct,ut)). Thus,
when the algorithm terminates it has correctly computed

img(Φ2i∗) =

img(φ(·, (~C1,u1)) ◦ · · · ◦ φ(·, (~Ct∗ ,ut∗))) = { ~D∗}

and by Eq. (4) we know that the output ~D∗ ∼ w as required.
That termination has a probability of 1 can be verified by

checking that there is a tuple ~B ∈ D with w(~B) > 0 and

consequently also w(~B) > 0 (assuming F is a distribution).
It follows that for every t there is a strictly positive probabil-
ity of coalescence, hence, the probability of non-coalescence
(~D = ⊥) converges to zero for increasing t.

Before we investigate the time requirements of Algorithm 3,
we end this subsection with a remark clarifying that it can
be implemented memory efficient. That is, it indeed leads
to a linear space pattern sampling algorithm.

Remark 1. Regarding the memory requirements, it might
seem that Algorithm 3 uses unbounded space because the
realizations of the rt = (~Ct,ut) have to be reused in ev-
ery epoch. However, assuming a standard model of ran-
domness, this can be achieved with constant memory and
without asymptotic time overhead. Assume the random
sequence can be enumerated with unit delay between any
two elements and constant memory from a single seed. The
problem is that the random sequence is accessed in a reverse
non-consecutive order: in epoch i the random variables r2i

down through r2i−1+1 are realized and then the realizations

of the first 2i−1 variables are reused. Let (si)i∈N be the se-
quence we can generate consecutively. Applying a reordering
scheme (see Fig. 2) we generate rt based on st′ with

t′ = 3 · 2dlog2 te−1 − t+ 1

and reconstruct st from s1 for t with dlog2 te 6= dlog2 t− 1e.
The total reconstruction cost within a complete inner loop
is 2t—not effecting the asymptotic time complexity.

dataset irreg Ffrq3 Frr·fq2

pumsb 0 1 > 40.6
ionosphere 0 1 2.1
anneal 0 1 8.3
krvskp 0 1 53.4
hypothyroid 0.03 1.3 13.3
sick 0.03 1.4 15.4
censusincome2000 0.05 3.2 243.3
vote 0.06 1.8 2.6
icdmabstracts 0.23 > 8947848.9 > 8347048.2
mammals 0.28 > 53938.7 8716

Table 1: Reduction factor of simulation steps when
using proposals w.r.t. w instead of uniform; higher
irregularity (irreg) of dataset increases gain.

4.2 Time Complexity
For a theoretical analysis of the time complexity of Algo-

rithm 3, note that the expected computation time is pro-
portional to the expected time of the event that a complete
coupling coalesces in one step. This time is geometrically
distributed with a success probability

pc = P[w(~C)/w(~C) ≥ u] ,

hence the expected time is 1/pc. This probability, in turn,
depends on how close w is to w , and, unfortunately, in
general this can be exponentially small in the input size.
However, in the special case of Di = D and qi = supp
for i ∈ {1, . . . , c}, the worse case situation is much bet-
ter; namely at most proportional to the inverse of the state
space size |D|c. This setting is for instance met in all the
distributions we consider in this paper except the discrimi-
nativity variants (but as we will see below, in practice the
behavior of discrimininativity does not differ much from the
theoretically good cases). The bound can be seen as fol-
lows: pc is bounded from below by the probability that a
tuple is proposed for which w is a sharp estimation of w,
i.e., P[w(~C) = w(~C)] ≤ pc. In particular this holds for the

tuples ~D with ~D(1) = · · · = ~D(c). Let ~D∗ be one of these

tuples maximizing w. Then ~D∗ is proposed with probability

w(~D∗) =

c∏
i=1

wi(~D
∗(i)) (12)

=

c∏
i=1

maxD∈D b?(P(D))∑
D∈D b?(P(D))

≥
c∏

i=1

1

|D| =
1

|D|c

as required. Thus, the order of the expected time is upper
bounded by the pre-processing time |D|c of the enumerative
algorithm for drawing tuples—in other words: the CFTP
variant can asymptotically not be worse than the straightfor-
ward implementation. It can, however, be much better. In
contrast to the enumerative algorithm, CFTP is not bound
to its worse case behavior. Instead it is adaptive to the hard-
ness of the input dataset, which is why it is sometimes re-
ferred to as a “true algorithm” (e.g., [13]). Thus, ultimately
the computation time “in practice” is the relevant quantity.

In order to assess the practical performance, we report
the empirical2 time requirements for 47 real-world datasets
taken from the UCI machine learning repository [8] and from
the FIMI repository [2] for adding some larger datasets. We
test the CFTP algorithm against the enumerative solution
for all distributions defined in Section 3.1 with c ≥ 2 (for
c = 1 the two algorithms are essentially identical). For hav-
ing a realistic settings, we impose some memory constraint
as well as some time constraint. The specific choices (here we
use a 2GB memory cap and 10 minute time cap) carry rela-
tively little significance for the baseline method: due to the
preprocessing bottleneck, the enumerative baseline method
has a fixed behavior in terms of both, time and space, that
grows exponentially in c and is determined by the number
of data records m. Hence, qualitatively we end up with the
same results if we, e.g., double the limits (note that for the
given settings it always hits the memory limit before it hits
the time limit). The CFTP algorithm, on the other hand, is
not affected by memory limits at all (as long as the dataset
itself fits into main memory), and, although also affected
by c and m can potentially behave much better than its
worst case (mc). What is more important is to fix a realis-
tic number of patterns, because the enumerative method for
Step 1 has to go through the preprocessing bottleneck only
once, and then—given that it does not run out of memory—
patterns are produced rapidly in time logcm per pattern.
Although the expected time of CFTP can be even smaller
than logcm, the pattern number is still a sensitive quantity
because it directly influences the baseline method’s relative
time per pattern—in contrast, for CFTP it is constant on
expectation. For this purpose we use function (13) from the
empirical evaluation of the pattern collections in application
contexts (Section 5).

Table 2 contains a list of all datasets along with the num-
ber of data records, patterns, and the detailed results for
the frequency distributions. The first observation is that, in-
deed, CFTP shows the anticipated good behavior: although
the theoretical bound grows exponentially in the number of
factors, even for Ffq4 with c = 4 the computation can be
performed within 1 seconds for 21 datasets, and for all but
3 datasets it can at least be performed within the 10 minute
time limit. In contrast, the enumerative implementation of
Step 1 runs out of memory already for small datasets as de-

2Test system is Intel Core i5, 2.4GHz with Java 7 (Win7).

Ffq2 Ffq3 Ffq4

dataset #m #pat em cp em cp em cp

labor 57 64 0 0 0 0 12 1
zoo 101 119 0 0 1 0 - 0
lymph 148 136 0 0 4 0 - 1
iris 150 36 0 0 3 0 - 0
hepatitis 155 130 0 0 5 1 - 2
wine 178 104 0 0 6 1 - 20
autos 205 191 0 0 12 5 - 214
glass 214 77 0 0 11 0 - 0
audiology 226 531 0 0 17 1 - 6
heartstatlog 270 113 0 0 - 0 - 1
breastcancer 286 73 0 0 - 0 - 0
hearth 294 90 0 0 - 0 - 0
heartc 303 107 0 0 - 0 - 2
primarytumor 339 142 0 0 - 0 - 1
ionosphere 351 295 0 0 - 26 - -
colic 366 144 0 0 - 7 - 82
vote 435 140 0 0 - 0 - 0
balancescale 625 46 0 0 - 0 - 0
soybean 683 301 1 0 - 4 - 44
credita 690 141 1 0 - 1 - 4
breastw 699 85 0 0 - 0 - 0
diabetes 768 86 1 0 - 0 - 1
vehicle 846 184 1 0 - 5 - 135
icdmabstracts 859 477 1 0 - 0 - 0
annealsmall 898 137 1 0 - 0 - 1
anneal 898 382 1 0 - 1 - 2
tictactoe 958 99 1 0 - 0 - 1
vowel 990 139 1 0 - 2 - 32
creditg 1000 209 1 0 - 4 - 22
germanstatlog 1000 209 1 0 - 4 - 21
pokerh2000 2000 120 5 0 - 1 - 10
censusinc2000 2000 427 5 0 - 6 - 98
mammals [15] 2183 266 6 0 - 1 - 16
segment 2310 223 7 0 - 3 - 37
krvskp 3196 430 15 0 - 2 - 26
hypothyroid 3772 332 19 0 - 1 - 1
sick 3772 332 19 0 - 1 - 1
abalone 4177 108 22 0 - 0 - 0
mushroom 8124 285 - 0 - 3 - 25
censusinc10K 10K 518 - 1 - 9 - 141
pendigits 11K 228 - 1 - 6 - 90
nursery 13K 122 - 0 - 0 - 1
letter 20K 242 - 1 - 29 - 421
adult 49K 218 - 1 - 1 - 1
pumsb 49K 1153 - 28 - - - -
connect 68K 689 - 3 - 36 - 256
accidents 340K 606 - 43 - - - -

Table 2: Datasets along with detailed computation
time for the frequency distributions; “-” corresponds
to out of time (>10 minutes) for CFTP or out of
memory (>2GB) for enumerative; in case of CFTP
the median of five repetitions is reported.

termined by m and c. The time requirements for the area
variants, Farea through Far·fq3 , are essentially identical to the
frequency variants. The reason for this is that they share
the characteristic that the proposal weights wi are only a
function of the data record size. In case the dataset is (close
to) being regular, this improves the coalescence time bound

because all of the tuples of the form ~D(1) = · · · = ~D(c) con-
tribute to the bound of Eq. 12. In contrast, the variants of
Frare do not have this property, and, consequently for some
datasets the behavior deviates upwards. All three groups,
however, have the same abort statistics: while the enumera-
tive baseline fails on 9 of the 47 datasets for 2-factor distribu-
tions, on 38 for c = 3, and on 46 for c = 4, the CFTP imple-
mentation fails on no dataset for c = 2, on 2 for c = 3, and
on 3 for c = 4. Finally, although, not polynomially bounded,
the variants of Fdscr typically are even the least demanding.
This is because D is smaller for these distributions because

the Dl are proper subsets of D, hence, the individual factors
are smaller. The corresponding CFTP abort statistics are 0,
1, and 4 for 2, 3, and 4 factors, respectively; as opposed to
5, 28, and 46 for the enumerative baseline. In summary, the
CFTP technique substantially increases the set of distribu-
tions and datasets for which two-step sampling is applicable.

We close this investigation with a note on the effectiveness
of choosing w over uniform as proposal probabilities. Table 1
contains the reduction factor of simulated time steps for a
few representative datasets. Again, the behavior differs be-
tween the Frare variants and, e.g., the Ffrq variants. Here the
reason is that the closer the dataset is to being regular (i.e.,
|D| = |D′| all D,D′ ∈ D) the closer is w to u for those dis-
tributions where wi is a function of the record size. Conse-
quently, while the gain of w over u is substantial throughout
all datasets for rare, for the other distributions this depends
on the degree of regularity. Irregularity is measured here by∣∣|D| − avgD∈D |D|

∣∣ /‖D‖.
5. EVALUATION OF DISTRIBUTIONS

In the previous sections we developed an algorithm that
can be used to efficiently perform pattern sampling based on
three or even four factor distributions. Now we show that
using such distributions brings indeed a substantial boost in
pattern quality.

5.1 Unsupervised Performance
In order to assess the unsupervised descriptive perfor-

mance of a pattern collection we use the pattern-based com-
pressor Krimp [19]. Krimp selects a sub-collection of the
extracted patterns and builds a code table from them along
with a compressed version of the input dataset. The code
table assigns code symbols to the patterns it contains, and
occurrences of the patterns are replaced by their respective
code symbols in the compressed database. Krimp approx-
imates a minimum description length code table, i.e., one
that minimizes the combined length of the code table and
the compressed dataset. Note that this principle factors in
redundancy—a pattern is not selected for the code table if
it does not achieve sufficient additional compression (over
the other selected patterns) that compensates for its own
size. The size reduction achieved this way can be regarded
as a measure of the information about the dataset that is
contained in a pattern collection.

c avg r r1 rq rh avg s

area · frq2 3 3.70 9 23 37 0.767
frq3 3 4.48 2 16 38 0.768
rare · frq3 4 4.52 15 22 29 0.768
area · frq3 4 4.77 1 17 34 0.767
frq4 4 5.32 2 17 29 0.768
rare · frq2 3 6.14 6 13 25 0.797
frq2 2 7.05 1 4 16 0.785
frq 1 7.45 2 4 14 0.787
rare · frq 2 7.48 0 4 14 0.800
area · frq 2 7.75 2 6 15 0.790
top-k closed – 8.61 4 5 11 0.824
area 1 11.50 0 1 1 0.859
rare 1 11.95 0 1 1 0.890

Table 3: Pattern extraction methods ordered by av-
erage rank (avg r) in Krimp experiments; number of
factors (c), number of datasets with top rank (r1),
upper quarter rank (rq), upper half rank (rh), and
average score, i.e., relative size reduction (avg s).

In our experiment we use all datasets from Table 2, and
for each we consider pattern collections consisting of size

k(D) = log |D| avg
D∈D

|D| . (13)

We include all distributions from Section 3.1 that do not rely
on label information. In addition we include top-k frequent
closed set extraction as a deterministic pattern collection
that can be extracted efficiently (see [17]), i.e., in polyno-
mial time of the combined size of the input dataset and the
output pattern collection. The same could be done with the
top-k frequent patterns (including non-closed), but closed
patterns are a stronger baseline for moderate values of k.
Thus, all methods considered here are true polynomial (ex-
pected) time algorithms.

The results are summarized in Table 3 where all meth-
ods are listed ordered according to the average rank they
achieved on all datasets. It stands out firmly that the distri-
bution with c = 3 and c = 4 are dominating the ranking. A
notable difference between the family of distributions based
on rare singletons to the others is that it stills receives a
substantial gain in the c = 4 variant over the c = 3 variant.
In contrast, for the families based on plain frequency and
area, the fourth factor does not improve the average rank
anymore. For some datasets it is even counter-productive.
It is not surprising that the effectiveness of adding powers of
frequency to the distributions has a natural limit, because
at a certain point this will degenerate the pattern collec-
tions again to sets of high frequency and high redundancy
patterns. Finally, it can be observed that already the distri-
butions with c = 2 outperform the deterministic baseline of
the top-k closed frequent sets.

5.2 Supervised Performance

c avg r r1 rq rh avg s

dscr · frq2+ 4 4.38 19 28 34 2.118

rare · frq2 3 4.63 6 19 36 1.734
dscr · frq+ 3 4.8 5 23 36 1.966

frq3 3 7 0 8 30 1.772
rare · frq 2 7.15 2 11 26 1.546
rare · frq3 4 7.33 3 15 27 1.589
dscr · frq 3 7.58 1 11 27 1.771
dscr · frq2 4 7.7 0 12 30 1.844
area · frq2 3 8.53 0 6 22 1.663
frq4 4 8.98 0 6 20 1.689
area · frq3 4 8.98 0 6 20 1.644
frq2 2 10.18 0 3 13 1.406
area · frq 2 11.68 0 0 8 1.298
top-k closed – 12.2 3 5 12 1.024
dscr 2 13.95 0 0 3 0.829
rare 1 14.1 0 1 4 0.788
frq 1 15.7 0 1 1 0.667
area 1 16.18 1 1 2 0.646

Table 4: Pattern extraction methods ordered by
their average rank (avg r) in the information gain
experiments with all attributes as in Table 3.

In a second experiment, we evaluate the supervised per-
formance of the random pattern collections. Patterns that
help distinguish between different classes, are needed in a
variety of application contexts, ranging from exploratory
data analysis to pattern-based-classification. In exploratory
data analysis a domain expert considers the patterns in their
own right, e.g., for finding malfunctioning or high-value sub-
groups of a population. In pattern-based-classification the

patterns are human-readable building blocks of a compound
prediction model [14]. In both cases, redundant informa-
tion about the target label, i.e., information that is already
contained in other result patterns, is useless or even counter-
productive. Therefore, we settle here for an evaluation mea-
sure that is based on the pattern’s information gain, down-
weighted by its similarity to more informative patterns. The
score of a pattern collection F = {F1, . . . , Fk}, where the Fi

are in descending order of information gain, is defined as

s(F) = ig(F1) +

k∑
i=2

ig(Fi) min
j∈{1,...,i}

δ(Fj , Fi)

where δ(Fi, Fj) is the Jaccard distance between the exten-
sion of the patterns

δ(Fi, Fj) = 1− |D[Fi] ∩ D[Fj]| / |D[Fi] ∪ D[Fj]| .

When used for feature selection, this measure leads to high
accuracy pattern-based classifiers [6].

The results are summarized in Table 4; this time also in-
cluding the distributions from the discriminativity group.
Again, all methods are ordered according to the average
rank achieved on all datasets. Similarly to the unsuper-
vised performance, also in terms of supervised performance,
distributions with c = 3 and c = 4 dominate the ranking
with the only exception of rare · frq. A further similarity is
that variants with four factors do not necessarily improve
over their three factor counterparts. An important excep-
tion is the overall best method dscr · frq2

+. In this case, the
additional factor further emphasizes the difference in the
support of the patterns per class, hence it is chosen sensi-
tively to the supervised evaluation scenario. Finally, note
that top-k frequent closed sets are again outperformed by
most of the random collections.

6. DISCUSSION
The CFTP-based variant of the two-step sampling frame-

work that is developed in this paper avoids the super-linear
space requirement of the previous enumerative version of
Step 1. In addition, the expected running time of CFTP is
usually much smaller than the previously fixed pre-processing
time, and for many pattern distributions it is also theoreti-
cally upper bounded by the complexity of the enumerative
Step 1. Consequently, the new algorithm allows to efficiently
draw samples for previously intractable distributions con-
taining up to four factors. The experimental evaluation of
these distributions shows that going up from two to three or
four factors, indeed, boosts the pattern quality substantially.

At the same time one can also observe a satiation effect in
the sense that the step from three to four factors does not
provide as much gain as the step from two to three. There-
fore, for future research it appears to be of higher priority to
identify the distributions best suited for specific application
tasks than to further boost the number of possible factors.
In particular, stratified random pattern collections that are
drawn from a mixture of distributions (and possible deter-
ministic methods) appear to be worth investigating. Also,
a currently unused potential lies in post-processing the ran-
dom pattern collections by applying fast local optimization
procedures. Finally, it is open how to lift the two-step sam-
pling framework to large scale inputs that do not fit into
main memory.

Acknowledgment. This work was supported by the DFG
(GA 1615/2-1 and GA 1615/1-1), the EC (ICT-FP7-LIFT-
255951) and Research Foundation Flanders (FWO).

7. REFERENCES
[1] M. Al Hasan and M. J. Zaki. Output space sampling

for graph patterns. PVLDB, 2(1):730–741, 2009.

[2] R. Bayardo, B. Goethals, and M. J. Zaki, editors.
IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, 2004, volume 126 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

[3] M. Boley, T. Gärtner, and H. Grosskreutz. Formal
concept sampling for counting and threshold-free local
pattern mining. In SDM, pages 177–188, 2010.

[4] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner.
Direct local pattern sampling by efficient two-step
random procedures. In KDD, pages 582–590, 2011.

[5] V. Chaoji, M. A. Hasan, S. Salem, J. Besson, and
M. J. Zaki. Origami: A novel and effective approach
for mining representative orthogonal graph patterns.
Stat. Anal. and Data Min., 1(2):67–84, 2008.

[6] H. Cheng, X. Yan, J. Han, and C.-W. Hsu.
Discriminative frequent pattern analysis for effective
classification. In ICDE, pages 716–725, 2007.

[7] G. Dong and J. Li. Efficient mining of emerging
patterns: Discovering trends and differences. In KDD,
pages 43–52. ACM, 1999.

[8] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[9] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling
databases. In DS, pages 278–289. Springer, 2004.

[10] H. Grosskreutz, S. Rüping, and S. Wrobel. Tight
optimistic estimates for fast subgroup discovery. In
ECML/PKDD, Part I, pages 440–456, 2008.

[11] D. J. Hand. Pattern detection and discovery. In ESF
Exploratory Workshop on Pattern Detection and
Discovery, pages 1–12. Springer, 2002.

[12] W. Hastings. Monte carlo sampling methods using
markov chains and their applications. Biometrika,
57(1):97–109, 1970.

[13] M. Huber. Perfect sampling using bounding chains.
Annals of App. Prob., 14(2):734–753, 2004.

[14] A. J. Knobbe, B. Crémilleux, J. Fürnkranz, and
M. Scholz. From local patterns to global models: the
lego approach to data mining. In From Local Patterns
to Global Models: Proceedings of the ECML/PKDD
2008 Workshop, 2008.

[15] A. Mitchell-Jones. The Atlas of European Mammals.
Poyser Natural History. T & AD Poyser.

[16] S. Morishita and J. Sese. Traversing itemset lattice
with statistical metric pruning. In PODS, pages
226–236, 2000.

[17] A. Pietracaprina and F. Vandin. Efficient incremental
mining of top-k frequent closed itemsets. In DS, pages
275–280, 2007.

[18] J. G. Propp and D. B. Wilson. Exact sampling with
coupled markov chains and applications to statistical
mechanics. Rand. Struct. Alg., 9(1-2):223–252, 1996.

[19] J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp:
mining itemsets that compress. Data Min. Knowl.
Discov., 23(1):169–214, 2011.

