
Petri net + nested relational calculus = dataflow

Jan Hidders1, Natalia Kwasnikowska2, Jacek Sroka3, Jerzy Tyszkiewicz3, and
Jan Van den Bussche2

1 University of Antwerp, Belgium
2 Hasselt University, Belgium
3 Warsaw University, Poland

Abstract. In this paper we propose a formal, graphical workflow lan-
guage for dataflows, i.e., workflows where large amounts of complex data
are manipulated and the structure of the manipulated data is reflected
in the structure of the workflow. It is a common extension of

– Petri nets, which are responsible for the organization of the process-
ing tasks, and

– Nested relational calculus, which is a database query language over
complex objects, and is responsible for handling collections of data
items (in particular, for iteration) and for the typing system.

We demonstrate that dataflows constructed in hierarchical manner, ac-
cording to a set of refinement rules we propose, are sound : initiated with
a single token (which may represent a complex scientific data collection)
in the input node, terminate with a single token in the output node
(which represents the output data collection). In particular they always
process all of the input data, leave no ”debris data” behind and the
output is always eventually computed.

1 Introduction

In this paper we are concerned with the creation of a formal language to define
dataflows. Dataflows are often met in practice, examples are: in silico experi-
ments of bioinformatics, systems processing data collected in physics, astron-
omy or other sciences. Their common feature is that large amounts of struc-
tured data are analyzed by a software system organized into a kind of network
through which the data flows and is processed. The network consists of many
servers, connected by communication protocols, i.e., HTTP or SOAP. In some
cases advanced synchronization of the processing tasks is needed.

There are well-developed formalisms for workflows that are based on Petri
nets [1]. However, we claim that for dataflows these should be extended with data
manipulation aspects to describe workflows that manipulate structured complex
values and where the structure of this data is reflected in the structure of the
workflow. For this purpose we adopt the data model from the nested relational
calculus which is a well-known and well-understood formalism in the domain of
database theory.

Consequently, in a dataflow, tokens (which are generally assumed to be
atomic in workflows) are typed and transport complex data values. Therefore,

apart from classical places and transitions, we need transitions which perform
operations on such data values. Of course, the operations are those of the nested
relational calculus.

This way, the title equation emerges:

Petri net + nested relational calculus = dataflow.

The resulting language can be given a graphical syntax, thus allowing one to
draw rather than write programs in it. This seems very important for a language
whose programmers would not be professional computer scientists.

Next, we can give a formal semantics for dataflows. On the one hand, it
is crucial, since we believe that formal, and yet executable, descriptions of all
computational processes in the sciences should be published along with their
domain-specific conclusions. Used for that purpose, dataflows can be precisely
analyzed and understood, which is crucial for: (i) debugging by the authors, (ii)
effective and objective assessment of their merit by the publication reviewers,
and (iii) easy understanding by the readers, once published.

Next, the formal semantics makes it possible to perform formal analysis of
the behavior of programs, including (automated) optimization and proving cor-
rectness.

We demonstrate the potential of the formal methods by proving the following
(presented in an informal manner here).

Theorem. Dataflows constructed hierarchically, i.e., according to a certain
set of refinement rules we propose, are sound: initiated with a single token (which
may represent a complex data value) in the input node, terminate with a single
token in the output node (which represents the output value). In particular they
always process all of the input data, leave no ”debris data” behind and always
terminate without a deadlock.

We would like to point out that the above theorem is quite general—it applies
uniformly to a very wide class of dataflows. Yet not every meaningful dataflow
can be constructed hierarchically. However, we believe that the prevailing ma-
jority of those met in practice are indeed hierarchical.

Our idea of extending classical Petri nets is not new in general. Colored Petri
nets permit tokens to be colored (with finitely many colors), and thus tokens
carry some information. In the nets-within-nets paradigm [2] individual tokens
have Petri net structure themselves. This way they can represent objects with
their own, proper dynamics. Finally, self-modifying nets [3] assume standard
tokens, but permit the transitions to consume and produce them in quantities
functionally dependent on the occupancies of the places.

To compare, our approach assumes tokens to represent complex data values,
which are however static. Only transitions are allowed to perform operations
over the tokens’ contents. Among them, the unnest/nest pairs act in such a way
that the unnest transforms a single token with a set value into a set of tokens,
and then the nest transforms the set of tokens back into a single “composite”
token.

Also the introduction of complex value manipulation into Petri nets was
already proposed in earlier work such as [4]. In this paper a formalism called

NR/T-nets is proposed where places represent nested relations in a database
schema and transitions represent operations that can be applied on the database.
Although somewhat similar, the purpose of this formalism, i.e., representing the
database schema and possible operations on it, is very different from the one
presented here. For example, the structure of the Petri net in NR/T-nets does not
reflect the workflow but only which relations are involved in which operations.
Another example is the fact that in Dataflow nets we can easily integrate external
functions and tools as special transitions and use them at arbitrary levels of the
data structures. The latter is an important feature for describing and managing
dataflows as found in scientific settings. Therefore, we claim that, together with
other differences, this makes Dataflow nets a better formalism for representing
dataflows.

1.1 What is the nested relational calculus?

The nested relational calculus (NRC) is a query language allowing one to describe
functional programs using collection types, e.g. lists, bags, sets, etc. The most
important feature of the language is the possibility to iterate over a collection.
The only collections used in the following are sets, hence in the description
below we ignore other collection types of NRC. NRC contains a set of base
types. Moreover, it is allowed to combine these types to form records and sets.

Besides standard constructs enabling manipulation of records and set, NRC
contains three constructs sng, map and flatten. For a value v of a certain type,
sng(v) yields a singleton list containing v. Operation map, applied to a function
from type τ to σ, yields a function from sets of type τ to sets of type σ.

Finally, the operation flatten, given a set of sets of type τ , yields a flattened
set of type τ , by taking the union. These three basic operations are powerful
enough for specifying functions by structural recursion over collections, cf. [5].

The inspiration for these constructs comes from the category-theoretical no-
tion of a monad and the monadic approach to uniformly describe different notions
of computation [6].

Under its usual semantics the NRC can already be seen as a dataflow descrip-
tion language but it only describes which computations have to be performed
and not in what order, i.e., it is rather weak in expressing control flow. For some
dataflows this order can be important because a dataflow can include calls to
external functions and services which may have side-effects or are restricted by
a certain protocol.

1.2 What are Petri nets?

A classical Petri net is a bipartite graph with two types of nodes called the
places and the transitions. The nodes are connected by directed edges. Only
nodes of different kinds can be connected. Places are represented by circles and
transitions by rectangles.

Definition 1 (Petri net). A Petri net is a triple 〈P, T,E〉 where:

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– E ⊆ (P × T) ∪ (T × P) is a set of edges

A place p is called an input place of a transition t, if there exists an edge
from p to t. Place p is called an output place of transition t, if there exists an
edge from t to p. Given a Petri net 〈P, T,E〉 we will use the following notations:

•p = {t | 〈t, p〉 ∈ E} p• = {t | 〈p, t〉 ∈ E}
•t = {p | 〈p, t〉 ∈ E} t• = {p | 〈t, p〉 ∈ E}
◦p = {〈t, p〉 | 〈t, p〉 ∈ E} p◦ = {〈p, t〉 | 〈p, t〉 ∈ E}
◦t = {〈p, t〉 | 〈p, t〉 ∈ E} t◦ = {〈t, p〉 | 〈t, p〉 ∈ E}

and their generalizations for sets:

•A =
⋃

x∈A

•x A• =
⋃

x∈A

x•

◦A =
⋃

x∈A

◦x A◦ =
⋃

x∈A

x◦

where A ⊆ P ∪ T . Places are stores for tokens, which are depicted as black dots
inside the places when describing the run a Petri net. Edges define the possible
token flow. The semantics of a Petri net is defined as a transition system. A
state is a distribution of tokens over places. It is often referred to as a marking
M ∈ P → N. The state of a net changes when a transitions fires. For a transition
t to fire it has to be enabled, that is, each of its input places has to contain at
least one token. If transition t fires, it consumes one token from each of the
places in •t and produces one token in each of the places in t•.

Petri nets are a well-founded process modeling technique. The interest in
them is constantly growing for the last fifteen years. Many theoretical results are
available. One of the better studied classes are workflow nets used in business
process workflow management[1].

Definition 2 (strongly connected). A Petri net is strongly connected if and
only if for every two nodes n1 and n2 there is a directed path leading from n1 to
n2.

Definition 3 (workflow net). A Petri net PN = 〈P, T,E〉 is a workflow net
if and only if:

(i) PN has two special places: source and sink. The source has no input edges,
i.e., •source = ∅, and the sink has no output edges, i.e., sink• = ∅.

(ii) If we add to PN a transition t∗ and two edges 〈sink, t∗〉, 〈t∗, source〉, then
the resulting Petri net is strongly connected.

1.3 How we combine NRC and Petri nets

In this paper we propose a formal, graphical workflow language for data-centric
scientific workflows. Since we call the type of workflows that we consider data-
flows, we call the proposed language a Dataflow language. From NRC we inherit
the set of basic operators and the type system. This should make reusing of
existing database theory results easy. Dataflows could for example undergo opti-
mization process as database queries do. To deal with the synchronization issues
arising from processing of the data by distributed services we will use a Petri-
net based formalism which is a clear and simple graphical notation and has an
abundance of correctness analysis results. We believe that these techniques can
be reused and combined with known results from database theory for verifying
the correctness of dataflows which can be described in the proposed language.

2 Dataflow language

The language we propose is a combination of NRC and Petri nets. We label
transitions with labels determining functions or NRC operators, and associate
NRC values with the tokens. As is usual with workflows that are described by
Petri net we mandate one special input place and one special output place. If
there is external communication this is modeled by transitions that correspond to
calls to external functions. We use edge labeling to define how values of consumed
tokens map onto the parameters of operations represented by transitions. To
express conditional behavior we propose edge annotations indicating a condition
that the value associated with the token must satisfy, so it can be transferred
through the annotated edge. We also introduce two special transitions, unnest
and nest, to enable explicit iteration over values of a collection.

A dataflow will be defined by an acyclic workflow net, transition and edge
labeling, and edge annotation. The underlying Petri net will be called a dataflow
net.

Definition 4 (dataflow net). A workflow net WFN = 〈P, T,E〉 is a dataflow
net if and only if it has no cycles.

With the presence of the NRC map operation acyclicity seems not to be a
strong limitation in real life applications. It has also an advantage as termination
is always guaranteed.

2.1 The type system

The dataflows are strongly typed, which means here that each transition con-
sumes and produces tokens with values of a well determined type. The type of
the value of a token is called the token type. The type system is similar to that
of NRC. We assume a finite but user-extensible set of basic types which might
for example be given by:

b ::= boolean | integer | string | XML | ...

where boolean contains the boolean values true and false, integer contains all
integer numbers, string contains all strings and XML contains all well-formed
XML documents. Although this set can be arbitrarily chosen we will require
that it at least contains the boolean type. From these basic types we can build
complex types as defined by:

τ ::= b | 〈l1 : τ1, ..., ln : τn〉 | {τ}

The type 〈l1 : τ1, ..., ln : τn〉, where li are distinct labels, is the type of all records
having exactly fields l1, ..., ln of types τ1, ..., τn respectively (records with no fields
are also included). Finally {τ} is the type of all finite sets of elements of type
τ . For later use we define CT to be the set of all complex types and CV the set
of all possible complex values (note that the set of basic types is a subset of the
set of complex types).

NRC can be defined on other collection types such as lists or bags. They
are also included in existing scientific workflow systems such as in Taverna [7]
where for example lists are supported. However, after careful analysis of vari-
ous use cases in bioinformatics and examples distributed with existing scientific
workflow systems we have concluded that sets are sufficient. Moreover, if lists
are needed they can be simulated with sets in which the position is indicated
by a number, but sets cannot be simulated with lists without introducing some
arbitrary order on the elements. This order unnecessarily complicates the de-
finition of the semantics and, as is known from database research, may limit
optimization possibilities.

2.2 Edge labels

Dataflows are not only models used to reason about data-processing experiments
but are meant to be executed and produce computation results. Distinguishing
transition input edges has to be possible to know how the tokens map onto
the operation arguments. This is solved by edge labeling. Only edges leading
from places to transitions are labeled. This labeling is determined by the edge
naming function EN : ◦T → EL (note that ◦T = P◦), where EL is some
countably infinite set of edge label names, e.g., all strings over a certain non-
empty alphabet.

2.3 Transition labels

To specify desired operations and functions we label Petri net transitions. The
transition labeling is defined by a transition naming function TN : T → TL,
where TL is a set of transition labels. Each transition label determines the
number and labeling of input edges as well as the types of tokens that the
transition consumes and produces when it fires. For this purpose the input typing
and output typing functions are used: IT : TL → CT maps each transition label
to the input type which must be a tuple type and OT : TL → CT maps each
transition label to the output type.

2.4 Edge annotation

To introduce conditional behavior we annotate edges with conditions. If an edge
is annotated, then it can only transport tokens satisfying the condition. Condi-
tions are visualized on diagrams in an UML [8] way, i.e., in square brackets. Only
edges leading from places to transitions are annotated. There are four possible
annotations defined by the edge annotation function:

EA : ◦T → {“=true”, “=false”, “=∅”, “6=∅”, ε}

The ε represents annotation absence. The meaning of the rest of the labels is
self explanatory. For detailed specification see section 4.

2.5 Place types

With each place in the dataflow net we associate a specific type that restricts
the values that tokens in this place may have. This is represented by a function
PT : P → CT .

2.6 Dataflow

The dataflow net with edge naming, transition naming, edge annotation and
place typing functions specifies a dataflow.

Definition 5 (dataflow). Dataflow is a five-tuple 〈DFN, EN, TN, EA, PT 〉
where:

– DFN = 〈P, T,E〉 is a dataflow net,
– EN : ◦T → EL is an edge naming function,
– TN : T → TL is a transition naming function,
– EA : ◦T → {“=true”, “=false”, “=∅”, “ 6=∅”, ε} is an edge annotation

function,
– PT : P → CT is a place type function.

Since it is not true that in all the dataflows the types of the places are
those that are required by the transitions we introduce the notion of well-typed
dataflows. Informally, a dataflow is well-typed if for each transition (1) the names
and types of its input places define a tuple type and it is the input tuple type of
the transition, (2) the types of the output places are equal to the output type of
the transition and (3) if any of the transitions input edges are annotated then
the annotations match the types of the associated input places.

Definition 6 (well typed). A dataflow 〈DFN,EN, TN, EA, PT 〉 is well-typed
if and only if for each transition t ∈ T it holds that:

1. If ◦t = {(p1, t), ..., (pn, t)} and for all 1 ≤ i ≤ n it holds that li = EN((pi, t))
and τi = PT (pi) then IT (TN(t)) = 〈l1 : τ1, ..., ln : τn〉.

2. For each (t, p) ∈ t◦ it holds that PT (p) = OT (TN(t)).

3. For each (p, t) ∈ ◦t it holds that:
– if EA((p, t)) ∈ {“=true”, “=false”} then PT (p) = boolean, and
– if EA((p, t)) ∈ {“=∅”, “ 6=∅”} then PT (p) is a set type.

An example dataflow evaluating an if u = v then f(x) else g(x) expression is
shown on Fig. 1. Although the transition labels and a precise execution semantics
are defined in the subsequent two sections, the example is self explanatory. First
three copies of the input tuple of type 〈u : b, v : b, x : τ〉 are made. Then each
copy is projected to another field, a and b are compared, and a choice of upper
or lower dataflow branch is made on the base of the boolean comparison result.
The boolean value is disposed in a projection and depending on the branch that
was chosen either f(x) or g(x) is computed.

id

π[a]

π[b]

π[x]

=
<..>

[=false]

<..>
[=true]

π[x]

π[x]

g()

f()

Fig. 1. If-then-else example

3 Components

Since it is hard to keep track of new scientific analysis tools and data repositories,
the language defines only a core label subset. Similarly to NRC the dataflow lan-
guage can be extended with new extension transition functions. Such extension
functions will usually represent computations done by external services. Exam-
ples from the domain of bioinformatics include: sequence similarity searches with
BLAST [9], queries run on the Swiss-Prot [10] protein knowledgebase, or local
enactments of the tools from the EMBOSS [11] package.

3.1 Core transition labels

The core transition labels are based on the NRC operator set plus two special
unnest and nest labels, as shown in Table 1. A transition label is defined as a
combination of the basic symbol (the first column) and a list of parameters which
consists of types and edge labels (the second column). The values of the input
type function IT and the output type function OT are given by the last two
columns. For example, a concrete instance (i.e., with concrete parameter values)
of the tuple constructor label would be tl′ = 〈··〉a,bool,b,int where the parameters
are indicated in subscript and for which the functions IT and OT are defined
such that IT (tl′) = OT (tl′) = 〈a : bool, b : int〉. Another example would bet
tl′′ = π[a]a,bool,b,int where IT (tl′′) = 〈a : bool, b : int〉 and OT (tl′′) = bool. The
remaining core transition labels are defined in Table 1 in a similar fashion.

Sym. Parameters Operation name Input type Output type

∅ l, τ1, τ2 empty-set constr. 〈l : τ1〉 {τ2}
{·} l, τ singleton-set constr. 〈l : τ〉 {τ}
∪ l1, l2, τ set union 〈l1 : {τ}, l2 : {τ}〉 {τ}
ϕ l, τ flatten 〈l : {{τ}}〉 {τ}
× l1, τ1, l2, τ2 Cartesian product 〈l1 : {τ1}, l2 : {τ2}〉 {〈l1 : τ1, l2 : τ2〉}
= l1, l2, b atomic-value equal. 〈l1 : b, l2 : b〉 boolean

〈〉 l, τ empty tuple constr. 〈l : τ〉 〈〉
〈··〉 l1, τ1, ..., ln, τn tuple constr. 〈l1 : τ1, ..., ln : τn〉 〈l1 : τ1, ..., ln : τn〉
π[li] l, 〈l1 : τ1, ..., ln : τn〉 field projection 〈l : 〈l1 : τ1, ..., ln : τn〉〉 τi

id l, τ identity 〈l : τ〉 τ

∗ l, τ unnest 〈l : {τ}〉 τ

∗−1 l, τ nest 〈l : τ〉 {τ}

Table 1. Core transition labels

3.2 Extension transition labels

Next to the set of core transition labels the set of transition labels TL also
consists of user-defined transition labels. As for all transition labels the functions
IT and OT must be defined for each of them. Moreover, for every user-defined
transition label tl we will assume that there exists an associated function Φtl :
IT (tl) → OT (tl) which represents a possibly non-deterministic computational
function that is performed when the transition fires.

To give a concrete example a bioinformatician may define a getSWPrByAC,
for which IT (getSWPrByAC) = 〈ac : string〉 and OT (getSWPrByAC) =
XML. The ΦgetSWPrByAC function would represent a call to a Swiss-Prot knowl-
edgebase and return a XML formated entry for a given primary accession num-
ber.

4 Transition system semantics

Let the 〈DFN, EN, TN, EA, PT 〉 be a well-typed dataflow (if not stated other-
wise this will be assumed in the rest of the paper). Its semantics is given as a
transition system (see subsection 4.2). Each place contains zero or more tokens,
which represent data values. Formally a token is a pair k = 〈v, h〉, where v ∈
CV is the transported value and h ∈ H is this value’s unnesting history. This
unnesting history is defined in the next subsection (see 4.1). The set of all possible
tokens is then K = CV × H. By the type of a token we mean the type of its
value, i.e., 〈v, h〉 : τ if and only if v : τ .

The state of a dataflow, also called marking, is the distribution of tokens over
places M ∈ (P×K) → N∪{0} where M(p, k) = n means that place p contains n
times the token k. We only consider as states distributions for which token types
match types of places they are in, i.e., for all places p ∈ P and tokens k ∈ K such

that M(p, k) > 0 it holds that k : PT (p). Transitions are the active components
in a dataflow: they can change the state by firing, that is consuming tokens from
each of their input places and producing tokens in each of their output places.
In distinction to workflow nets, for some transitions (nests and unnests) more
than one token per input place can be consumed and an arbitrary number of
tokens per output place can be produced. A transition that can fire in a given
state is called enabled. The types, numbers and unnesting history conditions of
tokens in input places for a given transition to be enabled are determined by its
transition label.

We adopt the following Petri net notations:

– M1
t−→ M2: the transition t is enabled in state M1 and firing t in M1 results

in state M2

– M1 −→ M2: there is a transition t such that M1
t−→ M2

– M1
θ−→ Mn: the firing sequence θ = t1t2...tn−1 leads from state M1 to state

Mn, i.e., ∃M2,M3,...,Mn−1M1
t1−→ M2

t2−→ M3
t3−→ ...

tn−1−−−→ Mn

– M1
∗−→ Mn: M1 = Mn or there is a firing sequence θ = t1t2...tn−1 such that

M1
θ−→ Mn

A state Mn is called reachable from M1 if and only if M1
∗−→ Mn.

Although the semantics of a dataflow is presented as a transition system, as
in classical Petri nets, two enabled transitions may fire concurrently, if there is
enough input tokens.

4.1 Token unnesting history

Every time it fires, an unnest transition (see 4.2) consumes one token with a
set value and produces a token for each element in this set. The information
about the unnested set and the particular element of that set for which a given
token was created is stored in that token’s unnesting history. This is illustrated
in Fig. 2 where in (a) we see in the first place a single token with value {1, 2, 3}
and an empty history (). When the unnest transition fires it produces a token
for each element as shown in (b). The history is then extended with a pair
that contains (1) the set that was unnested and (2) the element for which this
particular token was produced. As shown in (c) normal transitions will produce
tokens with histories identical to that of the consumed input tokens. Once all
the tokens that belong to the same unnesting group have arrived in the input
place of the nest transition as is shown in (d), which can be verified by looking at
their histories, then the nest transition can fire and combine them into a single
token as is shown in (e). Note that where the unnest transition adds a pair to
the history, the nest transition removes a pair from the history. Since sets can
be unnested and nested several times, the history is a sequence of pairs where
each pair contains the unnesting information of one unnesting step. Therefore
we formally define the set of all histories H as the set of all sequences of pairs
〈s, x〉, where s ∈ CV is a set and x ∈ s.

*

+10

*
-1

(a)

*

+10

*
-1

(b)

{1, 2, 3}; ()

1; (〈{1, 2, 3}, 1〉)
2; (〈{1, 2, 3}, 2〉)
3; (〈{1, 2, 3}, 3〉)

*

+10

*
-1

(c)

*

+10

*
-1

(d)

1; (〈{1, 2, 3}, 1〉)

12; (〈{1, 2, 3}, 2〉)
13; (〈{1, 2, 3}, 3〉)

12; (〈{1, 2, 3}, 2〉)
13; (〈{1, 2, 3}, 3〉)

11; (〈{1, 2, 3}, 1〉)

*

+10

*
-1

(e)

{11, 12, 13}; ()

Fig. 2. An illustration of the unnesting history of tokens

4.2 Semantics of transitions

The following shortcut will be used, since tokens can only flow along a condition-
annotated edge if the value of the token satisfies the condition:

〈v, h〉 y e
def= (EA(e) = ε ⇒ true) ∧

(EA(e) = “=true” ⇒ v = true) ∧
(EA(e) = “=false” ⇒ v = false) ∧
(EA(e) = “=∅” ⇒ v =∅) ∧
(EA(e) = “ 6=∅” ⇒ v 6= ∅)

A formal definition for unnest, nest and extension transition labels will be
given. The nest and unnest are special since only transitions labeled in this way
change the token’s unnesting history. Moreover nest transitions can consume
more than one token per input place and unnest transitions can produce more
than one token per output place. Transitions labeled by other labels behave as
in classical Petri nets except that each time they fire all consumed tokens must
have identical histories. The semantics of the rest of the core transition labels
fully agrees with the intuitions given by their names. In particular, they consume
and produce exactly one token when firing, do not change the unnesting history
and the formulas are analogous to those given for extension transition labels.

Unnest For an unnest transition t ∈ T it holds that M1
t−→ M2 if and only if

there exists a token 〈v, h〉 ∈ K such that:

1. for all places p ∈ •t it holds that:
(a) 〈v, h〉 y 〈p, t〉,
(b) M2(p, 〈v, h〉) = M1(p, 〈v, h〉)− 1 and
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all tokens 〈v′, h′〉 6= 〈v, h〉

2. for all places p ∈ t• it holds that:
(a) M2(p, 〈x, h⊕ 〈v, x〉〉) = M1(x, 〈v, h⊕ 〈v, x〉〉) + 1 for every x ∈ v and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 6= 〈x, h⊕ 〈v, x〉〉 for all x ∈ v

3. for all places p 6∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

where (a1, a2, ..., an)⊕ an+1 := (a1, a2, ..., an, an+1).

Nest For a nest transition t ∈ T it holds that M1
t−→ M2 if and only if there

exists a history hS , a set s = {x1, ..., xn} ∈ CV and a set of tokens S = {〈v1, hS⊕
〈s, x1〉〉, ..., 〈vn, hS ⊕ 〈s, xn〉〉} ⊆ K such that

1. for all places p ∈ •t it holds that:
(a) 〈vi, hi〉 y 〈p, t〉 for each 〈vi, hi〉 ∈ S,
(b) M2(p, 〈vi, hi〉) = M1(p, 〈vi, hi〉)− 1 for each 〈vi, hi〉 ∈ S,
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for each 〈v′, h′〉 6∈ S

2. for all places p ∈ t• and assuming that vS = {v1, ..., vn} it holds that:
(a) M2(p, 〈vS , hS〉) = M1(p, 〈vS , hS〉) + 1 and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all tokens 〈v′, h′〉 6= 〈vS , hS〉

3. for all places p 6∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

where (a1, a2, ..., an)⊕ an+1 := (a1, a2, ..., an, an+1).

Extensions For an extension transition t ∈ T that is labeled with an extension
transition label it holds that M1

t−→ M2 if and only if there exists a history h
such that with each place p ∈ •t we can associate a value vp ∈ CV such that

1. for all places p ∈ •t it holds that
(a) 〈vp, h〉 y 〈p, t〉,
(b) M2(p, 〈vp, h〉) = M1(p, 〈vp, h〉)− 1 and
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all 〈v′, h′〉 6= 〈vp, h〉

2. for all places p ∈ t• it holds that if v = ΦTL(t)(〈l1 : v1, ..., ln : vn〉) where
{〈l1, v1〉, ..., 〈ln, vn〉} = {〈EN(p, t), vp〉 | p ∈ •t} then
(a) M2(p, 〈v, h〉) = M1(p, 〈v, h〉) + 1 and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 6= 〈v, h〉

3. for all places p 6∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

5 Hierarchical dataflows

In spite of the fact that we extend workflow Petri nets, existing technical and
theoretical results can be easily reused. This is what we intend to demonstrate
here.

The dataflow language is developed to model data-centric workflows and
in particular scientific data processing experiments. The data to be processed
should be placed in the dataflow’s source and after the processing ends the result
should appear in its sink. A special notation is introduced that distinguishes two
state families. The state inputk is an input state with a single token k in the
source place and all other places empty, that is inputk(〈source, k〉) = 1 and
inputk(〈p, k′〉) = 0 if k 6= k′ or p 6= source. Similarly outputk is an output state
with single token in the sink place. Starting with one token in the source place
and executing the dataflow may not always produce a computation result in the
form of a token in the sink place. For some dataflows the computation may halt
in a state in which none of the transitions is enabled yet the sink is empty. Even
reaching a state in which there are no tokens at all is possible. Examples of such
incorrect dataflows are shown on Fig. 3.

t1 t2 t1

t3

*

*
-1

(a) (b)

Fig. 3. Incorrect dataflows

For the dataflow (a) the token from the source can be consumed by a tran-
sition t1 or t2, but not by both of them at the same time. Transition t3 will not
become enabled then, because one of its input places will stay empty. In the (b)
case, if t1 gets the source token, the ∗−1 does not become enabled, because only
∗ can produce a token with the required unnesting history. But it may even be
not enough when the ∗ transition consumes the source token. If the source token
carried an empty set, then in the resulting state all places would be empty.

Similar incorrectness was also studied in context of procedures modeled by
classical workflow nets. The correct procedures are called sound [1]. The notion
of soundness can in a natural way be adapted to dataflows:

Definition 7 (soundness). A dataflow 〈DFN,EN, TN, EA, PT 〉, with
sink : τ and source : θ, is sound if and only if for each token k′ : τ there exists
token k′′ : θ that:

(i) ∀M (inputk′
∗−→ M) ⇒ (M ∗−→ outputk′′)

(ii) ∀M (inputk′
∗−→ M ∧M(out, k′′) > 0) ⇒ (M = outputk′′)

(iii) ∀t∈T∃M,M ′inputk′
∗−→ M

t−→ M ′

5.1 Refinement rules

To avoid designing of unsound dataflows we propose a structured approach. In a
blank dataflow generation step a pattern dataflow is constructed in a top-down
manner, starting from a single place and performing refinements using a given
set of rules. Each refinement replaces a place or transition with larger subnet.
In the generated blank dataflow all transitions are unlabeled, but for each we
indicate if it will or will not be labeled with a nest and unnest.

[=Ø] [≠Ø] [≠Ø]

*

*
-1

[≠Ø]

(c) sequencial place split

(e) trueness based decision

(a) AND-split (b) OR-split

[false] [true]

(d) sequencial transition split

(f) emptiness based decision (g) iteration

Fig. 4. Refinement rules

The seven basic refinement rules are shown shown on Fig. 4. Each rule,
except the third one, can be applied only if the transformed node has both
input and output edges. All the input edges of the transformed node are copied
to all the resulting entry nodes, and an analogous rule applies to the output
edges. The rules and the aim to make dataflows structured as in structured
programming languages were motivated by the work done on workflow nets by
Piotr Chrzastowski [12].

Definition 8 (blank dataflow). A blank dataflow is a tuple 〈DFN,NP, EA〉
where:

– DFN = 〈P, T,E〉 is a dataflow net,
– NP : T → {∗, ∗−1, blank} is a nesting plan function,
– EA : E → {“=true”, “=false”, “=∅”, “ 6=∅”, ε} is an edge annotation

function.

Definition 9 (blank dataflow generations step). We start with a blank
dataflow 〈DFN, NP, EA〉 consisting of a single place with no transitions and
perform the transformations presented on Fig. 4 with the constraint that, except
for the sequential place split all the transformations may be applied only if a node
has at least one input and at least one output.

Definition 10 (hierarchical dataflow). Let DF = 〈DFN, EN, TN, EA, PT 〉
be a well-typed dataflow obtained by labeling of all transitions in a blank dataflow
net BDF = 〈DFN,NP, EA〉 under following conditions:

(i) a transition is labeled as nesting if and only if it was planned to, that is:
∃c∈CT TN(t) = nestc if and only if ∀t∈T NP (t) = ∗

(ii) a transition is labeled as unnesting if and only if it was planned to, that is:
∃c∈CT TN(t) = nestc if and only if ∀t∈T NP (t) = ∗−1

The dataflow DF is hierarchical if and only if the blank dataflow net BDF can
be constructed in a blank dataflow generation step.

Theorem 1. All hierarchical dataflows are sound.

Proof. (sketch) The proof follows the one given in [12]. It can easily be checked
that making any of the refinement rules doesn’t jeopardize the possibility of
obtaining a sound dataflow by labeling of a blank dataflow. The rest of the
proof proceeds by the induction on the number of refinements performed. ut

6 A bioinformatics dataflow example

In [13] it was illustrated that NRC is expressive enough to describe real life
dataflows in bioinformatics. In this work we combine NRC with Petri nets, using
the more convenient Petri net notation for explicitly defining the control flow.
In this section we also present a dataflow based on a real bioinformatics example
[14]. The corresponding dataflow net is given in Fig. 5. The goal of this dataflow
is to find differences in peptide content of two samples of cerebrospinal fluid (a
peptide is an amino acid polymer). One sample belongs to a diseased person and
the other to a healthy one. A mass spectrometry wet-lab experiment has provided
data about observed polymers in each sample. A peptide-identification algorithm
was invoked to identify the sequences of those polymers, providing an amino-acid
sequence and a confidence score for each identified polymer. The dataflow starts
with a tuple containing two sets of data from the identification algorithm one
obtained from the “healthy” sample and the other from the “diseased” sample:
complex input type 〈 healthy : PepList , diseased : PepList 〉 with complex
type PepList = { 〈 peptide : String, score : Number 〉 }. Each data set

 id

<healthy: PepList, diseased: PepList>

 × peptide

lists

 ∪

 *

[diseased][healthy]

 * *

 *-1 *-1

 *-1

 diseased

PepList

<peptide: String, score:Number>

[peptide] [peptide]

String

{String}

{String}

{<peptide: String, lists: <healthy: PepList, diseased: PepList>>}

{⋅}

<peptide: String, lists: <healthy: PepList, diseased: PepList>>

{<healthy: PepList, diseased: PepList>}

<⋅⋅>

 healthypeptide

 ×

 h

 ×

 dpeptide peptide

[peptide] [peptide] [lists] [peptide] [lists]

String

[healthy] [diseased]{⋅}{⋅}

{String} PepList

{<peptide: String, d: <peptide: String, score: Number>>}

 *

 *-1

 *

 *-1

<peptide: String, d: <peptide: String, score: Number>>

score_h score_d

  

{Number}

{Number}

{{Number}}

<peptide: String, healthy: {Number}, diseased: {Number}>

{<peptide: String, healthy: {Number}, diseased: {Number}>}

<healthy: PepList, diseased: PepList>

PepList{String}

Fig. 5. Finding differences in peptide content of two samples

contains tuples consisting of an identified peptide, represented by base type
String, and the associated confidence score, represented by base type Number.
The dataflow transforms this input into a set of tuples containing the identified
peptide, a singleton containing the confidence score from the “healthy” data set
or empty set if the identified peptide was absent in the “healthy” data set, and
similarly, the confidence score from the “diseased” data set. The complex output
type is the following: { 〈 peptide : String, healthy : {Number }, diseased :
{Number } 〉 }.

7 Conclusions and further research

In this paper we have presented a graphical language for describing dataflows,
i.e., workflows where large amounts of complex data are manipulated and the
structure of the manipulated data is reflected in the structure of the workflow.
In order to be able to describe both the control flow and the data flow the
language is based on Petri nets and the nested relational calculus (NRC) and has
a formal semantics that is based upon these two formalisms. This ensures that
from the large body of existing research on these we can reuse or adapt certain
results. This is illustrated by taking a well-known technique for generating sound
workflow nets and using it to generate sound dataflow nets. We have shown that
the technique that restricts itself to hierarchical dataflows and the technique
that goes beyond, can both be readily applied to our formalism.

In future research we intend to compare, investigate and extend this for-
malism in several ways. Since the dataflow nets tend to become quite large for
relatively simple dataflows, we intend to introduce more syntactic sugar. We also
want to investigate whether a similar control-flow semantics can be given for the
textual NRC and see how the two formalisms compare under these semantics.
Since existing systems for data-intensive workflows often lack formal semantics,
we will investigate if our formalism can be used to provide these. It is also our
intention to add the notions of provenance and history to the semantics such that
these can be queried with a suitable query language such as the NRC. This can be
achieved in a straightforward and intuitive way by remembering all tokens that
passed through a certain place and defining the provenance as a special binary
relation over these tokens. Storing all these tokens makes it not only possible
to query the history of a net but also to reuse intermediate results of previous
versions of a dataflow. Another subject is querying dataflows where a special
language is defined to query dataflow repositories to, for example, find similar
dataflows or dataflows that can be reused for the current research problem. Since
dataflow nets are essentially labeled graphs it seems likely that a suitable existing
graph-based query formalism could be found for this. Finally we will investigate
the possibilities of workflow optimization by applying known techniques from
NRC research. Since optimization often depends on the changing of the order
of certain operations it will then be important to extend the formalism with a
notion of “color” for extension transitions that indicates whether their relative
order may be changed by the optimizer.

References

1. van der Aalst W.: The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers (1998) 21–66

2. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Lectures on
Concurrency and Petri Nets. (2003) 819–848

3. Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: ICALP. (1978)
464–476

4. Oberweis, A., Sander, P.: Information system behavior specification by high level
petri nets. ACM Trans. Inf. Syst. 14 (1996) 380–420

5. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theoretical Computer Science (1995) 3–48

6. Moggi, E.: Notions of computation and monads. Information and Computation
(1991) 55–92

7. Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Wipat,
A., Li, P.: Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics (2004)

8. Object Management Group: Unified modeling language resource page.
(http://www.uml.org/)

9. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J. Mol. Biol. (1990) 403–410

10. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., et al.: The
swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids
Research 31 (2003) 365–370

11. Rice, P., Longden, I., Bleasby, A.: Emboss: The european molecular biology open
software suite (2000). Trends in Genetics 16 (2000) 276–277

12. Chrzastowski-Wachtel, P., Benatallah, B., Hamadi, R., O’Dell, M., Susanto, A.:
A top-down petri net-based approach for dynamic workflow modeling. In: Pro-
ceedings of Business Process Management: International Conference, BPM 2003.
Volume 2678 of Lecture Notes in Computer Science., Springer (2003) 336–353

13. Gambin, A., Hidders, J., Kwasnikowska, N., Lasota, S., Sroka, J., Tyszkiewicz,
J., Van den Bussche, J.: NRC as a formal model for expressing bioinformatics
workflows. Poster at ISMB 2005 (2005)

14. Dumont, D., Noben, J., Raus, J., Stinissen, P., Robben, J.: Proteomic analysis of
cerebrospinal fluid from multiple sclerosis patients. Proteomics 4 (2004)

