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ABSTRACT
Missing values make up an important and unavoidable prob-
lem in data management and analysis. In the context of
association rule and frequent itemset mining, however, this
issue never received much attention. Nevertheless, the well
known measures of support and confidence are misleading
when missing values occur in the data, and more suitable
definitions typically don’t have the crucial monotonicity pro-
perty of support. In this paper, we overcome this problem
and provide an efficient algorithm, XMiner, for mining asso-
ciation rules and frequent itemsets in databases with miss-
ing values. XMiner is empirically evaluated, showing a clear
gain over a straightforward baseline-algorithm.

1. INTRODUCTION
Association Rule Mining (ARM) [1] is the problem of find-

ing rules X ⇒ Y in a database D of sets, such that when
a set in D contains X, the probability is high that Y is a
subset as well. Traditionally two measures for association
rules are defined, support and confidence, and mining al-
gorithms are typically divided into two parts: first find all
frequent sets, and then from these, generate all confident
rules. The subset lattice spanning the exponentially large
search space of itemsets is traversed using the monotonicity
of the support measure. Doing so allows large sublattices
with an infrequent set as root to be pruned completely.

In the original definitions of association rule mining, miss-
ing data are not considered. In practice, however, missing
data is a very prominent and non-trivial problem that needs
to be handled adequately. The usual approach is to either
impute the missing data by using, e.g., the mean of the at-
tribute values that are present, or to simply remove tuples
with nulls. These techniques, however, can severely distort
the distribution of the data, which can result in misleading
or meaningless output, e.g. the loss of good or fabrication of
bad rules.

The approach proposed in this paper is based on previous
work of Ragel and Crémilleux [5] in which the notions of
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support and confidence are redefined, as to deal more ade-
quately with missing data. Support is no longer measured
against the complete database, but instead, the support of
a set is defined w.r.t. the subset of the database having no
missing values in the attributes of the itemset. Furthermore,
they introduce the notion of a minimal representativity of a
set, as to avoid sets in the output that are frequent solely
because there are very few tuples that do not have missing
values in the attributes of the set. The new support measure,
though adequate, is no longer monotone with the size of the
itemset. Hence, most well known algorithms can no longer
be applied when these definitions are used. In their paper,
however, Ragel and Crémilleux only focus on the properties
of these measures, showing that they are very suitable to re-
cover the original rules after randomly introducing missing
values. They do not focus on efficient algorithms.

For a probabilistic approach to missingness, we refer to
Kryszkiewicz [4], where pessimistic, optimistic and expected
estimations of support and confidence are defined, and are
compared to the measures of Ragel and Crémilleux.

The contributions of this paper can be summarized as fol-
lows. First, in order to deal with the non-monotonicity of
the support measure, we introduce and study the theoretical
notion of extensibility of itemsets. Extensibility subsumes
frequency but does have the monotone property. Secondly,
based on the properties of extensibility that we show, an
algorithm, XMiner, is given. Finally, through experimenta-
tion on real-life datasets with a prototype of the algorithm
and a straightforward baseline algorithm, it is shown that
XMiner (for extensibility miner) has a significant perfor-
mance improvement w.r.t. the baseline approach.

2. MISSING VALUES
This section describes the problem with missing values

for association rules, gives definitions of the measures we
will use, and defines the extensibility property for itemsets.

2.1 The problem
Typically, the support of an itemset is measured against

the complete database. Hence, if a certain attribute-value
occurs in 25% of the tuples, then it’s support is said to be
25%, even if a value of the attribute is missing in 50% of
the tuples. Similarly, the confidence of an association rule
is measured as the number of tuples satisfying all attribute-
value combinations present in the rule, divided by the num-
ber of tuples satisfying only the antecedent, no matter how
many values of the consequent were actually missing in those
tuples. For example, consider the two small databases in



t A B C
1 a1 b2 c1

2 a1 b2 c2

3 a2 b2 c2

4 a1 b1 c1

t A B C
1 a1 b2 c1

2 ? b2 c2

3 a2 b2 ?

4 a1 ? c1

Figure 1: Identical databases, without and with

missing values

figure 1, of which the second one is simply the first one,
but with some values missing. Even in this small exam-
ple with only a few nulls, the effects are visible. Using
the classic definitions of support and confidence, the rule
(A = a1) ⇒ (B = b2) has a support of 2

4
= 50%, and con-

fidence 2
3

= 66% in DB1. The rule (A = a1) ⇒ (C = c1)
has exactly the same support and confidence. Due to the
missing values in DB2, the support of rule 1 has dropped to
1
4

= 25%, while that of rule 2 has remained the same. The

confidence of rule 1 has also dropped, to 1
2

= 50%, while

the confidence of rule 2 has become 2
2

= 100%. In general
support can drop, and confidence can either rise or drop.
Depending on minsup and minconf, and the missingness it-
self, this can lead to the loss of rules that are frequent and
confident, as well as the creation of rules that aren’t in the
original database.

2.2 Definitions
Firstly, some notation. We assume that we are working in

a relational database D, since it is in these databases (un-
like transactional ones), that the problem of missing values
occurs more naturally. Each tuple t has a transaction/tuple
identifier tid. Attributes A, B, . . . and their values a, b, . . .
will be in upper- and lowercase respectively. An item is an
attribute-value pair, written as (A = ai). The missingness-
and attribute item are denoted (A = ?) and (A = ∗). They
are used when a value is resp. either missing or observed for
the attribute A. (Note that although these notations are
similar to those of a proper item, we cannot just treat them
as such.) Itemsets, denoted X, Y, . . . are sets of these pairs.
We will assume that itemsets are consistent, in that no two
items of a same attribute - e.g. (A = a1) and (A = a2) -
occur in an itemset together. The only trivial exception to
this is (B = b1) and (B = ∗), but since the former implies
the latter, it may be omitted. By count we mean the abso-
lute number of transactions in D that support an itemset:
count(X) := |{t|X ⊆ t.items}|. Finally, the attribute set of
an itemset X is defined as: X∗ := {(A = ∗)|(A = ai) ∈ X}.
For example, {(A = a1), (C = ∗), (D = ?)}∗ = {(A = ∗)}.

As already argued by Ragel and Crémilleux [5], it is more
sensible to use support and confidence measures that are
defined relative to the non-missingness of the items in the
itemset or association rule. Specifically, they will be mea-
sured against the sample of the database that has no missing
values for the itemsets in question. However, if this sample
becomes very small but nevertheless yields strong rules, its
influence on the results should be restricted, since this out-
put is not representative.

Support.We will use the redefined notion of the support
of an itemset X as the number of tuples supporting X, rel-
ative to the number of tuples that have no missing values

for the attributes of X. The nulls in the database may or
may not hide complete transactions that support X. Note
that the tuples we do count, still might have missing val-
ues for other attributes. Statistically this is expressed as
Pr(X|X∗), hence the new support measure becomes:

Definition 1. supp(X) :=
count(X)

count(X∗)

Unfortunately this improved measure is not monotone. This
means that in the exponential search space which forms a
lattice, the frequent and infrequent sets can no longer be
separated by a simple border. This leads to ‘infrequent en-
claves’ among frequent sets and vice versa. At first sight it
seems we have to traverse the lattice entirely.

Confidence.Although this paper is mainly concerned with
itemset mining, for the sake of completeness the definition
of the confidence measure is also given here. Similar to sup-
port, the confidence of a rule X ⇒ Y is also redefined, as the
number of tuples that support them, relative to the number
of tuples that support the antecedent and have no missing
values for the attributes of the consequent (and trivially the
antecedent). Statistically this is expressed as Pr(Y |X∪Y ∗).

Definition 2. conf(X ⇒ Y ) :=
count(X ∪ Y )

count(X ∪ Y ∗)

Note that with this new definition of confidence, it is no
longer easy to construct the confident rules from the fre-
quent sets. The confidence of a rule X ⇒ Y is not equal to
supp(X ∪ Y )/supp(X). In fact, Pr(Y |X ∪ Y ∗) only equals
Pr(Y |X) if X and Y are independent.

Representativity.This is a completely new measure. It
is needed to restrict the influence of itemsets that are not
observed a lot (i.e. all tuples in D have missing values for
some of the attributes) on confidence and support. In other
words the sample of D that has no missing values for the
attribute set of X must be a representative sample.

Definition 3. rep(X) :=
count(X∗)

|D|

Whether this definition is absolute or relative to the number
of tuples in the database is not that important, just like
with the traditional definition of support. Below we will use
representativity either way for the sake of brief notation. It
will always be clear from the context which is meant.

Extensibility. Finally, we define the notion of extensibility.

Definition 4. An itemset X is called extensible, if it has

a frequent and representative superset, i.e.

∃Y :



supp(X ∪ Y ) ≥ minsup

rep(X ∪ Y ) ≥ minrep

It is clear that extensibility is monotone (a superset of an in-
extensible itemset is never extensible). Note that Y may be
empty, so all representative frequent itemsets are extensible.

Remarks.All of these definitions are backwards compatible
with the traditional ones, when missingness is absent. In
that case, representativity is 100%, and extensibility is the
same as frequency.



In its absolute form, representativity is the denominator
of support, so checking it first is already half of the work
of computing support (plus, it is monotone). The rela-
tive form is also similar to traditional support, as well as
the new version (but on the level of attributes): rep(X) =
count(X∗)/count((X∗)∗), since (X∗)∗ = ∅. This implies
a hierarchy among the items, where for an attribute A,
A > (A = ?) and A > (A = ∗) > (A = a). However,
using a generalized itemset mining algorithm (as in [6]) is
not appropriate, because more general itemsets do not nec-
essarily have higher support.

2.3 Properties
The redefined support measure is no longer monotone, but

since extensibility subsumes frequency (i.e. inextensible sets
are infrequent or unrepresentative), we will mine for these
sets instead. For this we need a numerical test to check the
extensibility of an itemset.

Theorem 1. For an itemset X, define the set SX as

SX := {Z ⊇ X|Z is representative and frequent}, i.e. all

frequent and representative supersets of X. Let among their

local maxima, m(X) be the lowest representativity, m(X) :=
min{rep(Z)|Z ∈ SX}, or m(X) := +∞ if SX = ∅. Then

X is extensible ⇔
count(X)

m(X)
≥ minsup

Proof. If X is extensible, SX 6= ∅, so count(X)/m(X) ≥
supp(X) ≥ minsup, since minrep ≤ m(X) ≤ rep(X). If
X is inextensible, SX = ∅, so count(X)/m(X) = 0 <
minsup.

We now have a tangible way of checking the monotone
extensibility property. The only remaining obstacle might
be the counting of extensible yet infrequent sets. However,
depending on the algorithm used, it is usually necessary to
compute them anyway, since without them it would be im-
possible to compute the count of their supersets, some of
which are indeed frequent.

Unfortunately, this does not completely solve the problem,
since the aforementioned property is rather paradoxical. In
order to prune the supersets of a set, we must first compute
all of them to obtain the value m(X). Hence, the theorem
cannot be directly applied in an algorithm. However we
really only need one direction of the equivalence, so we can
use a lower bound for m(X), as described in this corollary.

Corollary 1. For an itemset X, let k ≤ m(X). Then
count(X)

k
< minsup ⇒ X is not extensible.

3. XMINER

Baseline algorithm.First, we propose a straightforward
solution which will serve as a baseline for comparison. This
algorithm is based on the observation that if an itemset X
is representative, its support is at most count(X)/minrep.
Otherwise checking this fraction is unnecessary. Using the
corollary of theorem 1, minrep plays the role of lower bound.
Formally, the algorithm first checks if rep(X) ≥ minrep, and
if true count(X) is counted. If count(X)/minrep < minsup

the algorithm concludes X is inextensible. Otherwise the
algorithm must continue with the supersets of X.

The fact that the m(X) lower bound is a fixed constant
for all itemsets, facilitates implementation of the baseline.
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Figure 2: Partial subtree with tail of A marked

We choose to adapt Eclat [7] for its simplicity and speed. It
does a depth first traversal, for each itemset maintaining a
tid list of transactions supporting that itemset. At each step
itemsets with a common prefix are combined to obtain larger
ones (this is where the monotonicity of extensibility is used).
Our implementation also uses diffsets as an optimization [8].

The baseline is equivalent to (albeit more efficient than)
finding all representative itemsets whose count is larger than
minsup × minrep, and filtering out the frequent ones in a
postprocessing step.

Main algorithm. Now we introduce XMiner, along with
some specific improvements. We approximate m(X) by a
lower bound better than minrep, which is dependent of X
(or, more accurately, X∗). Since m(X) denotes a representa-
tivity, we simplify our search for it somewhat, by dropping
the frequency constraint in SX . This is actually equiva-
lent to finding min{count(Z∗) ≥ minrep|Z∗ ⊇ X∗}. We do
this by making intersections, quickly looking ahead to the
itemset at the the so-called tail, the longest path below the
current itemset in the traversal tree (figure 2). This item-
set has minimal representativity among all local supersets
of the current itemset. If the tail is not representative we
replace it with a better bound, namely minrep.

We add two optimizations. Firstly, the ordering of the
itemsets. In regular depth-first itemset mining it is often
beneficial to order the itemsets on support, putting less fre-
quent ones at the roots of larger subtrees, yielding better
pruning. However, XMiner orders the itemsets by their rep-
resentativity instead, and not support, because of the erratic
behavior of the support measure, and the impossibility of or-
dering attributes with several possible values. This not only
improves pruning based on minrep, but also returns a bet-
ter approximation for m(X). The second is rather trivial.
When, while computing the tail

T

j
X∗

j , we find that at step

j we have rep(
T

i<j
X∗

i ) ≤ minrep, we can stop early. Note
that together with ordering, this happens sooner.

In stead of intersecting itemsets to obtain the representa-
tivity of the tail, it is also possible to approximate it using
basic set theory, using simple subtractions (similar to the
MaxMiner algorithm [2]). Although this approximation is
much faster, our experiments have shown this lower bound
is far too weak to approximate m(X), such that the overall
effect is negative on both the efficiency (number candidate
itemsets versus frequent and representative itemsets) and
execution time of XMiner.

As a last remark, we point out that XMiner is equally
efficient as the Eclat algorithm in complete datasets i.e. the
number of candidate extensible or frequent itemsets is the
same. Through the use of diffsets in the implementation,
the execution time is also only marginally higher. (At depth
greater than one in the subset lattice, all diffsets for repre-
sentation become empty, resulting in negligible overhead.)



Algorithm 1 XMiner(set of itemsets P )

Require: P is a set of representative and possibly extensi-
ble ordered itemsets with a common (omitted) prefix

1. for all Xi ∈ P do

2. compute m′(X) = max(count(∩j≥iX
∗
j ), minrep)

3. for all values xi of Xi with
count(Xi = xi)/m′(Xi) ≥ minsup do

4. for all Xj ∈ P with Xj > Xi do

5. if count(Xij = ∗) ≥ minrep then

6. for all values xj of Xj do

7. (Xij = xij).tids =
(Xi = xi).tids ∩ (Xj = xj).tids

8. if count(Xij = xij)/m′(Xi) ≥ minsup then

9. P i = P i ∪ {(Xij = xij)}
10. if count(Xij = xij)/count(Xij = ∗) ≥

minsup then

11. report (Xij = xij) as frequent
12. XMiner(P i)

Local Monotonicity The approximation m′(X) only uses
local information (in the traversal tree), which yields better
(local) pruning. However, this also means that informa-
tion about the inextensibility of X cannot be extrapolated
to elsewhere in the lattice. This unfortunately prevents us
from maximizing the use of the monotonicity of extensibility
(otherwise possible by e.g. maintaining a trie of extensible
itemsets while doing a right-most depth-first traversal).

4. EXPERIMENTS
We ran experiments with XMiner and the baseline algo-

rithm on two datasets: the results of the Eurovision song
contest from 1957 to 2005, and the census income dataset
from the UCI KDD Archive [3]. We implemented XMiner
and the baseline algorithm in C++ using diffsets to opti-
mize for speed [8], and compiled them with gcc 3.4.6 (all
with -O3) on a machine with a 2.2 GHz Opteron CPU and
2GB of RAM, running Linux.

Eurosong dataset.In the Eurovision Song Contest a lim-
ited number of countries can enter and give points to the
others. The countries that perform worst cannot enter in
the next edition. Over the years more countries could join,
recently a semi-final was introduced and countries that don’t
enter can cast votes, which previously wasn’t possible. Hence
the database has a lot of missing values. Each tuple repre-
sents a year-country combination, and has 2*43 attributes
for points given to and received from other countries.

We fixed the minimum representativity at 5%, 10%, and
30%, and varied minsup, to look at the number of candi-
date sets and the execution time of XMiner, relative to the
baseline algorithm. For the baseline algorithm with param-
eters minrep=5% and minsup=10%, the process was killed
after 4000 seconds, so no comparison with XMiner could
be made, and this point is not plotted (3(a)). XMiner’s
course doesn’t follow the number of representative and fre-
quent itemsets very tightly here, but still outperforms the
baseline algorithm by almost an order of magnitude in gen-
erated itemsets (3(b)), and a factor of eight in execution
time (3(c)).

Some interesting results are listed here. We used both
this and another version of the set with 50 tuples and 1849
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Figure 3: Eurosong dataset experiments

attributes for each country-country combination (for points
given). Among others we found that the United Kingdom is
rather popular. The itemset corresponding to the UK get-
ting points from another country participating in the same



year, or any country after the rules changed in 2004 (notice
the need for accounting for nulls) is 67.8%. On the other
side we find Finland, for which the itemset corresponding
to not getting any points from other participating countries
is 70.7%. (Note that our dataset did not yet include the
results from the 2006 edition of the contest, when Finland
actually won with a ‘monster score’.) Examples from the
other dataset are the following. If all three Scandinavian
countries Denmark, Norway and Sweden enter the the com-
petition in the same year, the support of Denmark giving
points to Norway, Norway to Sweden, and Sweden to Den-
mark, is 30%. The support of Spain and Andorra giving
each other points is even 100%. However, as Andorra only
started entering the competition in 2004, the representativ-
ity is low.

Census income dataset.This is a large database of about
100MB. It has 33 nominal attributes and nearly 200k tuples.
Some attributes have no missing values, other attribute val-
ues are missing in up to 50% of the tuples.

We mined it for varying minsup, minrep, First, we fixed
minrep at 15% and varied minsup between %50 and 10%,
using the original database (4(a)). Only for a minsup of
50% and 40% did the baseline algorithm finish within 4000
seconds. Still, this already shows the phenomenal differ-
ence with XMiner, and the efficiency of XMiner itself, the
number of generated candidate itemsets follows the frequent
ones very tightly. Second, we fixed minsup at 15% and ran
experiments for different minreps (4(b)). To stay within
reasonable time, we used our census 3 database (with the
most values removed). For a decreasing minrep the number
of frequent and representative itemsets does not increase
dramatically. The number of generated candidate itemsets
by XMiner increases similarly, while the baseline algorithm
generates increasingly more candidates.

5. CONCLUSIONS
In this paper we worked with new measures for itemsets

and association rules, to be used in incomplete databases,
and we implemented them in a novel algorithm, XMiner.
Support and confidence account for missingness correctly,
the representativity measure relates to the degree of non-
missingness of an itemset. Because support is no longer
monotone, we define extensible itemsets, which have at least
one frequent representative superset. Extensibility is mono-
tone and since it subsumes frequency is used to traverse
the exponential search space of itemsets. XMiner estimates
the minimal representativity of the maximal supersets of an
itemset to determine extensibility. Experiments show that
it is very efficient and that it outperforms the most simple
baseline algorithm.
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