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Abstract. When dealing with large amounts of data, exact query answering is
not always feasible. We propose a query approximation method that, given an
upper bound on the amount of data that can be used (i.e., for which query evalu-
ation is still feasible), identifies a part C of the data D that (i) fits in the available
space budget; and (ii) provides accurate query results. That is, for a given query
Q, the query result Q(C) is close to the exact answer Q(D). In this paper, we
present the theoretical framework underlying our query approximation method
and provide an experimental validation of the approach.
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1 Introduction

Traditional query processing has primarily focused on the efficient computation of ex-
act answers to queries. In applications with huge amounts of data, however, even simple
queries that require a single scan over the entire database cannot be answered within an
acceptable time bound. To accommodate for this, one can either try to leverage par-
allelism and distributed computation, settle for approximate query answering, rely on
data-reduction techniques, or combinations thereof. In this paper we consider approxi-
mate query answering, or AQA for short.

Motivated by the need for big data analytics, recent work on AQA mainly con-
centrates on the efficient and accurate evaluation of simple aggregate queries. A recent
proposal in this context is the BlinkDB system [1]. In a nutshell, BlinkDB addresses the
following question: Given a query workload Q={Q1,...,Q`} consisting of aggregate
queries Qi, each equipped with an importance weight pi, for i∈{1,...,`}, a database
D and given a storage capacity B, what is the best set of samples S={S1,...,S`} of
D that one should materialise such that (i) the samples fit in the available storage, i.e.,
|S1∪···∪S`|6B; and (ii) evaluating the queries on samples in S provides an accu-
rate estimate of the exact query answer. In addition, the most important queries (i.e.,
those with high weight) should be approximated more accurately than the less impor-
tant queries (i.e., those with low weight).

In this paper, we consider a similar setting as in BlinkDB but for non-aggregate
queries. That is, we are interested in finding the best set C of tuples in the database D
that one should store within the available storage capacity B such that Qi(C) is “close”
to Qi(D) for any i∈{1,...,`}. For this purpose, we equip databases with distance func-
tions to measure the closeness between two databases (Section 2), replace the samples
used in BlinkDB by so-called coverings C of the data, i.e., sets of tuples that are within



a certain distance from the original database, and introduce the valid selection covering
problem (Section 3). We then show how to estimate the size of coverings (Section 4)
and how the distance between coverings and the original data propagates through
the queries in the workload (Section 5). Finally, similar to BlinkDB, we identify the
desired coverings of the data by means of a mixed integer linear program (Section 6).
An experimental validation of our AQA framework (Section 7) concludes the paper.

2 Preliminaries

B Databases. LetR=(R1,...,Rn) be a relational schema consisting of n relations Ri,
each having a fixed aritymi. LetR(A1,...,Ak) be a relation inR. We assume that each
relation carries a distinct set of attributes. Furthermore, each attribute Ai in R comes
equipped with a domain dom(Ai)⊆U, where U is a countably infinite set. A tuple t of
R(A1,...,Ak) is simply an element of dom(A1)×···×dom(Ak). A database of R is
given by D=(I1,...,In), where Ii is a finite set of tuples of Ri, for i∈{1,...,n}. The
active domain of D, denoted by adom(D), is the set of elements from U present in D.
Finally, the size |D| of D refers to the number of tuples in D.

B Distances and metric databases. We further assume the presence of distance func-
tions dAi

:dom(Ai)×dom(Ai)→R, one for each attribute Ai inR. A metric database
(D,d) simply consists of a database D over R together with a collection of distance
functions dAi

for attributes Ai inR.
To compare the distance between tuples on arbitrary sets X of attributes, we define

dX(s,t)=max
{
dAi(s[Ai],t[Ai])|Ai∈X

}
, provided, of course, that s and t are defined

over a set Y of attributes such that X⊆Y . For example, when dealing with numerical
attributes Ai for which dAi(s,t)=|s[Ai]−t[Ai]|, we have that dX(s,t)=max

{
|t[Ai]−

s[Ai]||Ai∈X
}

. We also need to lift distance functions to sets of tuples, i.e., database
instances. Given two sets C and D of tuples, we define for s∈C, dX(s,D):=
min{dX(s,t)|t∈D} and dX(C,D)=max{maxs∈CdX(s,D),maxt∈DdX(t,C)}. In
addition, we define diamX(D):=max{dX(s,t)|s,t∈D}. We denote the diameter with
diam(D) when X is the set of all attributes in D.

Example 1. Consider a part D of the Lineitem table from the TPCH benchmark as
shown in Figure 1 with attributes line number (LN), quantity (QT), extended price
(EP), line status (LS), ship date (SD) and ship mode (SM). To turn D into a metric
database (D,d) we equip each of the attributes with a distance function. For exam-
ple, on the numerical attributes extended price and quantity we can use the absolute
difference between values, on ship date one can use a date-specific distance func-
tion, and on the remaining categorical attributes the discrete distance function can
be used. Consider tuples t1 and t2 in D. Their distance on the extended price at-
tribute is then given by dEP(t1,t2)=|50634.87−11379.84|=39255.03. Now if we in-
clude the quantity attribute when comparing these two tuples, then d{EP,QT}(t1,t2)=
max{|50634.87−11379.84|,|39−8|}=39255.03. In this case the distance remains un-
changed since the EP attribute dominates the distance value. As another example, using
the discrete distance function on the line status attribute we have that dLS(t1,t2)=1
whereas dLS(t2,t3)=0.



LN QT EP LS SD SM

t1: 1 39 50634.87 O 1997-04-12 REG AIR
t2: 2 8 11379.84 F 1992-10-23 AIR
t3: 3 32 53079.36 F 1994-04-23 RAIL
t4: 4 12 22341.12 F 1993-08-11 REG AIR
t5: 5 27 29542.86 F 1992-10-28 TRUCK
t6: 6 11 16350.18 O 1997-11-28 REG AIR
t7: 7 3 4065.99 O 1996-10-07 RAIL
t8: 8 12 18102.24 O 1996-04-30 RAIL
t9: 9 37 56625.91 O 1997-09-12 TRUCK
t10 : 10 22 39112.26 F 1992-12-24 RAIL

Fig. 1. An instance D of the Lineitem relation.

To illustrate how the distance between sets of tuples is measured, consider two sub-
sets S1 and S2 of the instance D given by S1={t1,t3} and S2={t5,t6}. For simplicity,
we only use the quantity attribute. First, note that the distance between t1 and S2 is
given by dQT(t1,S2)=min{dQT(t1,t5),dQT(t1,t6)}=min{12,28}=12. Similarly, one
can verify that dQT(t3,S2)=5, dQT(t5,S1)=5 and dQT(t6,S1)=21. Then, the distance
between S1 and S2 is given by dQT(S1,S2)=max{max{12,5},max{5,21}}=21.

B Conjunctive queries. We consider conjunctive queries (CQ) specified by
Qi(Y )=πY σFi(R

′
1×···×R′k),

where eachR′j is a renaming ρj(Rj) of a relationRj inR, Y is a set of attributes and Fi
is a selection predicate consisting of equality conditions of the form Ai=Aj or Ai=c
for attributes Ai and Aj and constant c∈dom(Ai).

3 The valid covering selection problem

In this section we first define the notion of a covering of a metric database relative to
a set of attributes as a way of approximating the data. Next, we use these coverings
to approximate the results of queries in some workload with a given budget on the
available space to store the coverings of the data.

B Data approximation by coverings. Consider two metric databases (D,d) and (C,d)
overR using the same distance functions dAi

. Let X be a set of attributes and let ε>0.
We say that (C,d) is an (X,ε)-covering of (D,d) if for any tuple s∈D there exists a tu-
ple t∈C such that dX(s,t)6ε, indicating that any tuple inD is close to a tuple in C rel-
ative to the set X of attributes. Furthermore, given a space budget constraint B, we say
that an (X,ε)-covering (C,d) of (D,d) is valid relative to B, or simply valid, if |C|6B,
i.e., the covering fits in the available space. A collection of coverings (C1,d),...,(C`,d)
of (D,d) is valid if |C1∪···∪C`|6B. Clearly, when valid coverings are concerned, the
budget B imposes constraints on ε, and vice versa. For example, suppose that B=1 then
ε=diam(D); if B=|D| then ε can be taken to be zero.

B Query approximation by coverings. We want to use coverings to approximate query
answers. More specifically, we are given a space budget B and a query workload



Q={Q1,...,Q`} consisting of CQ queries. In addition, the frequency or importance
of query Qi in the workload is given by a parameter pi. Then, given a metric database
(D,d) we want to find the best valid collection of ` coverings (Ci,d), i∈{1,...,`}, of
(D,d) that can be used to approximate each query Qi inQ relative to a user-defined set
Zi of attributes in the result schema of the query and accuracy bounds δi. Formally:

Valid Covering Selection Problem. Given a metric database (D,d), query workload
Q={Q1(Y1),...,Q`(Y`)}, sets of attributes Zi⊆Yi, weights pi, accuracy bounds δi,
for i∈{1,...,`}, and a budget constraint B, find for each query Qi a covering (Ci,d)
of (D,d) such that maxi∈{1,...,`}pi ·|δi−dZi(Qi(D),Qi(Ci))| is minimised and in ad-
dition, the collection (C1,d),...,(C`,d) is valid relative to B.

That is, this problem asks which coverings one should store in the available space
as to “best” approximate the queries in the query workload. Here, with “best” we mean
that Q(Ci) approximates Q(D) on the given attributes Zi as close as possible to the
user-defined accuracy bound δi. A naive approach for solving this problem is to just try
all possible coverings and select the best ones. Not only is this exhaustive enumeration
of coverings undesirable, it also requires the identification of coverings that are valid.
Clearly, one cannot compute all such coverings efficiently. Furthermore, to select the
best set of coverings one needs to compute Qi(D) (and also Qi(C) for that matter).
Recall that we want to speed-up query evaluation by considering approximations. The
exact computation of Qi(D) to find out the best way to approximate Qi(D) is clearly
not an option! To make the valid covering selection problem feasible, one therefore
needs to address the following two challenges.

Size estimation: We are looking for valid coverings. This implies that one must
be able to determine the sizes of (X,ε)-coverings to identify those coverings that are
valid, i.e., fit into the budget. For this purpose we extend the catalog of the DBMS
with information about valid coverings. We show in the next section how this can be
efficiently implemented on top of a DBMS.

Error propagation: What can we say about dZ(Q(D),Q(C)) without storing (C,d)
and without evaluating Q(D) and Q(C)? That is, how does the accuracy bound on the
data affect the accuracy bound on the query results? We will show in Section 5 that
one can estimate dZ(Q(D),Q(C)) solely based on the structure of the query Q and the
knowledge that (C,d) is an ε-covering.

4 Size estimation of coverings

In this section we consider how to estimate the size of an (X,ε)-covering of a met-
ric database (D,d) for a given set X of attributes and accuracy value ε. The size of a
minimum (X,ε)-covering is often referred to as the (X,ε)-covering number and will
be denoted by N(D,X,ε). Not surprisingly, it is infeasible to compute N(D,X,ε) in
practice. Indeed, one can verify that the computation ofN(D,X,ε) corresponds to find-
ing a solution to the VERTEX COVER problem, which is known to be NP-complete [2].
Although algorithms exist that approximate N(X,D,ε) (e.g., based on [3]), they rely
on efficient methods that, given a set S of tuples in D find a tuple t that maximises
dX(t,S). Unfortunately, most database systems do not adequately support the indexing



of tuples relative to arbitrary distance functions; a crucial feature for finding farthest re-
moved tuples. It is outside the scope of this paper to bring database systems up-to-date
with recent advances in metric indexing techniques as reported in [4].

Instead we aim to expand the DBMS’s catalog with quantitative information on
(X,ε)-coverings for various sets X of attributes and accuracy values ε. We particularly
want that this information is easy to compute and maintain within the DBMS. As a first
attempt, one can use Ñ(D,X,ε)=diamX(D)/ε as a trivial upper bound onN(D,X,ε).
Intuitively, this upper bound assumes uniform distribution of values in X . A more sen-
sible upper bound is given by min{Ñ(D,X,ε),|πX(D)|} since |πX(D)| also provides
an upper bound on N(D,X,ε).

To obtain a more fine-grained, yet efficient-to-compute upper bound forN(D,X,ε),
we further assume that the domain values of attributes in X can be (e.g., lexicographi-
cally) sorted. We can then obtain an estimate for N(D,X,ε) by counting the number of
non-empty buckets in an equi-width histogram H(D,X,ε). We denote this estimate by
Ĥ(D,X,ε) for a given histogram H(D,X,ε).

Recall that an equi-width histogram H(D,X,ε) consists of k tuples t1,...,tk such
that (i) t1[X]<t2[X]<···<tk[X]; (ii) for each i∈{1,...,k−1}, dX(ti,ti+1)=ε; and
finally (iii) for Di={t∈D |ti[X]6t[X]<ti+1[X]} we have D=D1∪···∪Dk. That is,
H(D,X,ε) partitions the data into “buckets” Di of diameter ε.

We next describe a procedure, referred to as Cover_Estim, for computing
Ĥ(D,X,ε). The pseudo-code of this procedure is shown in Figure 2. In a nut-
shell, Cover_Estim(D,X,q,ε) recursively processes the attribute list X (line 5).
When the current attribute is Ai, the algorithm has already computed a histogram
H(D,〈A1,...,Ai−1〉,ε) consisting of Ĥi−1 non-empty buckets and now further re-
fines each of these buckets B in H(D,〈A1,...,Ai−1〉,ε) by means of the sub-
procedure bucket(B,Ai,ε). The result is a histogram H(D,〈A1,...,Ai〉,ε) consisting
of Ĥi buckets, where Ĥi is obtained from Ĥi−1 by adding for each bucket B in
H(D,〈A1,...,Ai−1〉,ε) the number of buckets returned by bucket(B,Ai,ε). The recur-
sive procedure halts when either an empty bucket is considered (line 2) or when enough
attributes have been processed (line 7), at which point we return the trivial upper bound
min{diamX′(D)/ε,|πX′(D)|} for the remaining attributes X ′=〈Aq+1,...,Ap〉. Note
that q is a user-chosen parameter that determines how many attributes should be pro-
cessed using the bucket refinement procedure. If q=p, the recursion stops when all at-
tributes have been processed. In this case, a recursive call withX=∅ is made, indicating
that the non-empty bucket B under consideration does not need any further refinement
and thus will contribute a count of 1 to the estimate (line 8). Also note that if q=0
then no recursion takes place and the naive upper bound min{diamX(D)/ε,|πX(D)|}
is returned for the complete attribute set X (line 7).

It remains to detail the sub-procedure bucket(D,Ai,ε) which, given a database D,
attribute Ai and accuracy value ε, constructs a partition D1∪···∪Dk of the data corre-
sponding to a histogram H(D,Ai,ε). Assuming that the sorted attribute values for Ai
can be cast as numerical values, which is often the case in practice, we can leverage
the presence of the Width_bucket function in SQL. This function takes as input an
attribute Ai, the minimal and maximal value of the active domain of Ai in D, and a
desired number of buckets. The result consists of pairs (t,i) where t∈D and i is the



Procedure Cover_Estim
Input: A database D, list of attributes X=〈A1,A2,...,Ap〉, number of attributes to be
processed by the non-naive method q, accuracy threshold ε.
Output: Number Ĥ(X,D,ε) of non-empty buckets in equi-width histogram H(X,D,ε).
1. Ĥ :=0;
2. if D=∅ then return 0;
3. if p>0 then
4. if q>0 then
5. for each B=bucket(D,A1,ε) do Ĥ :=Ĥ+Cover_Estim(B,〈A2,...,Ap〉,ε,q−1);
6. return Ĥ .
7. else return min{diamX(D)/ε,|πX(D)|}.
8. else return 1.

Fig. 2. Procedure for estimating the size of a covering.

unique bucket number to which t belongs. From this, the number of non-empty buck-
ets and a histogram can easily be computed. More specifically, bucket(D,Ai,ε) can be
implemented by means of the following SQL expression:
SELECT Width_bucket(Ai,min,max,min

{⌈ diamAi
(D)

ε

⌉
,|πAi

(D)|
}
) AS bucket

FROM R GROUP BY bucket ORDER BY bucket
where we use the estimate min{ddiamAi

(D)/εe,|πAi
(D)|} for an upper bound on the

number of buckets. Furthermore, it should come as no surprise that the recursive pro-
cedure Cover_Estim can be implemented entirely in SQL, provided of course that we
know the attributes in X up front (otherwise a recursive SQL query is needed). Indeed,
the SQL implementation of Cover_Estim consists of nested variants of the SQL query
given above, where the nesting level is determined by the number of attributes in X .
Observe that Cover_Estim not only computes size bounds but returns actual coverings.

Example 2. Recall the Lineitem database D given in Example 1. For the ex-
tended price (EP) attribute the diameter of D is simply given by diamEP(D)=
maxt∈D t[EP]−mint∈D t[EP]=52559.92. Observe that |πEP(D)|=10, hence at most
10 buckets are needed to exactly cover D on attribute EP. Taking our ε=8770, the
quantity min

{⌈
52559.92

8770

⌉
,10
}
=6 is an upper bound on the number of buckets needed.

We now illustrate the Cover_Estim procedure. Firstly consider the evaluation of
Cover_Estim(D,EP,0,8770). In this case, all attributes are processed by the naive
method (q=0) and therefore the procedure outputs the upper bound of 6 buckets. Next,
we set q=1 so that the procedure Cover_Estim(D,EP,1,8770) now uses the non-naive
method by evaluating the above SQL query. We obtain a covering C={t1,t4,t6,t7,t10}
of D of size 5 buckets as follows: B1={t7,t2},B2={t6,t8},B3={t4,t5},B4={t10}
and B5={t1,t3,t9}. Tuples are sorted in each bucket. It is readily verified that C is
an (EP,8770)-covering of D. From this small example we can already see that the
non-naive method improves on the trivial upper bound on the number of buckets (five
buckets rather than six). Furthermore we also note that C is an ({EP,QT},8770)-
covering of D. This is so because after the Cover_Estim procedure processes the EP
attribute, the buckets do not require any further refinement. Indeed, for each bucket Bi,
for i∈{1,...,5}, we already have that diamQT(Bi)6ε.



Remarks. (1) We described a very specific method for estimating N(D,X,ε). How-
ever, any other method (e.g., based on k-means clustering or other kinds of histograms)
can be easily plugged into our query approximation system. (2) It is important to
observe that the cost of estimating N(D,X,ε) is a one-time cost and can be done
when the DBMS is idle. (3) Clearly, the order in which the attributes in X are fed
to Cover_Estim(D,X,ε) directly impacts the estimate ofN(D,X,ε). Further investiga-
tion is required to determine heuristics to select the best order.

5 Error propagation

The second challenge that we have to address is the efficient estimation of
dZ(Q(C),Q(D)) for (X,ε)-coverings (C,d) of (D,d). That is, we need to estimate the
error on the query result due to the use of coverings rather than the original database.
Since our aim is to speed-up the query evaluation of Q, one cannot rely on computing
Q(D),Q(C) and dZ(Q(D),Q(C)), as this requires evaluating the queries. The estima-
tion procedure for dZ(Q(D),Q(C)) should thus be independent of (D,d) and thus also
of the chosen covering (C,d). This bears the question whether the knowledge of the
query Q and the fact that there is an (X,ε)-covering of the data is sufficient to obtain an
accuracy bound on the query result. We answer this question affirmatively, provided that
we slightly relax the queryQ into an approximate query Q̃, as will be explained shortly.

The overall strategy to estimate dZ(Q(D),Q(C)) then consists of showing under
which conditions an (X,ε)-covering (C,d) of (D,d) can be transformed in a (Z,ε′)-
covering Q̃(C) of Q(D). Given this, we can then estimate dZ(Q(D),Q(C)) using
dZ(Q(D),Q̃(C))=ε′. In particular, we show how ε′ can be expressed in terms of ε,
hereby alleviating the need for evaluating any query in the estimation process.

B Query relaxation. Let us first explain why query relaxations are needed. Suppose that
Q=σA=a(R) and let (D,d) be a metric database. Then Q(D) contains all tuples t∈D
with t[A]=a. Take any (A,ε)-covering (C,d) of (D,d). Then, unless C contains tuples
t of D with t[A]=a, we have that Q(C)=∅ and thus Q(C) is not a covering of Q(D).
In other words, we cannot guarantee that any (A,ε)-covering (C,d) of (D,d) suffices to
approximate Q(D). A similar situation arises when considering Q=σA=B(R).

To remedy this situation, we not only approximate the data but also consider
relaxations of queries. More specifically, we compare Q=σA=a(R) on (D,d) with
its relaxation Q̃=σd(A,a)6η(R) on (C,d), for some value η. The semantics of Q̃
is as expected: σd(A,a)6η(C) selects all tuples t in C for which dA(t[A],a)6η.
When considering (A,ε)-coverings (C,d) of (D,d) with ε6η, we then have that
dA(Q(D),Q̃(C))6ε. Similarly, one can verify that when Q=σA=B(R) is relaxed to
Q̃=σd(A,B)6η(R), then dA,B(Q(D),Q̃(C))6ε for any ({A,B},ε)-covering (C,d) of
(D,d) with ε6 η

2 . Note that for a selection condition A=B to make sense, attributes
A and B must have the same domain and distance function. We denote dA=dB by d.
Hence, σd(A,B)6η(C) selects all tuples t in C such that d(t[A],t[B])6η. Now, given
a tuple t in D such that t[A]=t[B] and given an ({A,B},ε)-covering (C,d) of (D,d)
with ε6 η

2 , we have that there exists a tuple t′∈C such that dA,B(t,t′)6ε. Indeed,



observe that d(t′[A],t′[B])6d(t[A],t′[A])+d(t[B],t′[B])=2ε6η. Hence, t′∈Q̃(C)

and Q̃(C) is a covering of Q(D).
For a CQ query Q we denote by Q̃η the query obtained by replacing any selection

predicate in Q by its relaxed version, i.e., all occurrences of σA=a and σA=B in Q are
replaced by σd(A,a)6η and σd(A,B)6η , respectively.

Example 3. Recall again our Lineitem databaseD from Example 1. Consider the con-
stant selection queryQwhich selects all tuples t∈D with t[EP]=18102.24 and projects
on the EP attribute. We reuse our covering from Example 2, i.e., C={t1,t4,t6,t7,t10}.
The relaxed query Q̃ selects all tuples t∈C with t[EP]∈[18102.24−8770,18102.24+
8770] and also projects on the EP attribute. Evaluating both queries, we have Q(D)=

{t8} and Q̃(C)={t4,t6}, from which we obtain

dEP(Q(D),Q̃(C))=4238.8868770.

Hence, Q̃(C) is (EP,8770)-approximation of Q(D).

B Propagation algorithm. We next provide an algorithm, Error_Prop, that given a CQ
query Q, a set X of attributes inR, an accuracy value ε, and relaxation parameter η for
Q̃η , returns:

(a) a set of attributes prop(Q,X) in the result schema of Q; and
(b) an error bound err(Q,ε),
such that for any (X,ε)-covering (C,d) of (D,d) it is guaranteed that

dZ(Q(D),Q̃η(C))6err(Q,ε)

for any non-empty Z⊆prop(Q,X). The algorithm Error_Prop works inductively on
the structure of the query Q and is described in Figure 3. Its correctness can be readily
verified but this is omitted due to space limitations.

B Query column sets and error guarantees. One can see from the description of
Error_Prop(Q,X,ε,η) in Figure 3 that certain conditions on coverings need to hold
when using them to approximate Q(D). That is, when prop(Q,X) is empty, insuf-
ficiently many attributes are covered to approximate Q. Observe that prop(Q,X) is
empty when X does not contain (i) any attribute in the relations occurring in Q (line
3); (ii) an attribute that appears in a selection condition (lines 8, 11); or (iii) any of the
projected attributes in Q (line 14). Given a set of attributes Z in the result schema of
Q, one can compute for each relation Ri in R the minimal set of attributes Xi such
that for X=X1∪···∪Xn, Z⊆prop(Q,X). In other words, the Xi’s are the attributes
that are required to be covered in Ri in order to approximate Q on Z. We denote by
qcs(Q,Z) the set of pairs (Ri,Xi). In analogy with the BlinkDB system, we also re-
fer to qcs(Q,Z) as the query column set of Q relative to Z. The query column sets
can be computed by starting from Z and by reversely applying the different cases in
Error_Prop(Q,X,ε,η) for prop(Q,X). We omit the details due to space limitations.

Furthermore, even when the query column set X=qcs(Q,Z) is covered it may be
that err(Q,X)=+∞ and thus no approximation is achieved. This happens when ε is



Procedure Error_Prop (Q,X,ε,η)

1. switch
2. case Q=R(A1,...,Ak)
3. return prop(Q,X):=X∩{A1,...,Ak}; and err(Q,ε):=ε;
4. case Q=ρ

(
Q′(A1,...,Ak)

)
for some renaming ρ=(A1 7→B1,...,Ak 7→Bk)

5. return prop(Q,X):=ρ
(
prop(Q′,X)

)
; and err(Q,ε):=err(Q′,ε);

6. /* Where prop(Q′,X) and err(Q′,ε) are the result of Error_Prop(Q′,X,ε,η) */
7. case Q=σA=a(Q

′)
8. return prop(Q,X):=prop(Q′,X) if A∈prop(Q′,X) and prop(Q,X):=∅ other-
9. wise; and err(Q,ε):=err(Q′,ε) if ε6η and err(Q,ε):=+∞ otherwise;
10. case Q=σA=B(Q

′)
11. return prop(Q,X):=prop(Q′,X) if A,B∈prop(Q′,X) and prop(Q,X):=∅ other-
12. wise; and err(Q,ε):=err(Q′,ε) if ε6η/2 and err(Q,ε):=+∞ otherwise;
13. case Q=πY (Q′)
14. return prop(Q,X):=prop(Q′,X)∩Y ; and err(Q,ε):=err(Q′,ε);
15. case Q=Q1×Q2

16. return prop(Q,X):=prop(Q1,X)∪prop(Q2,X); and err(Q,ε):=max{err(Q1,ε),
17. err(Q2,ε)}.
18. /* Here, prop(Qi,X) and err(Qi,ε) are given by Error_Prop(Qi,X,ε,η), for i=1,2.*/

Fig. 3. Error propagation algorithm.

too large compared to the chosen relaxation parameter η and when Q contains selec-
tion conditions (lines 9, 12). In particular, from Error_Prop(Q,X,ε,η) we obtain the
following error guarantees:

If





(a) Q does not contain selection conditions
or

(b) Q only contains constant selection conditions and ε6η
or

(c) Q contains an equality selection conditions and ε6η/2




=⇒err(Q,ε)=ε.

Otherwise, we have an unbounded (+∞) error. Of course, this also implies that un-
bounded errors can be avoided altogether by considering relaxations Q̃η that depend on
ε, i.e., by letting η=0 in case (a); η=ε in case (b); and η=2ε in case (c). In the fol-
lowing, we always assume that these relaxations are used when approximating Q and
simply denote the relaxation by Q̃.

Example 4. Consider query Q′ obtained from modifying query Q given in Example 3
by projecting on two attributes {EP,QT} instead of only projecting on EP. Suppose
that we want to approximateQ′ on these attributes, i.e., Z={EP,QT}with user-defined
threshold η=8770. To identify which (X,ε)-coverings ofD can be used to approximate
Q′, we must have that Z⊆prop(Q′,X). Evaluating the procedure Error_Prop tells us
that any (X,ε)-covering of D such that {EP,QT}⊆X will do. This follows directly
from the selection (line 8) and projection (line 14) rule in the procedure. Consider the
({EP,QT},8770)-covering C from Example 2. It is readily verified that for ε=8770,
we get an error bound err(Q′,ε)=ε=8770. Hence, for any Z⊆{EP,QT} we guarantee
that dZ(Q′(D),Q̃′η(C))68770, i.e., we can approximate Q′ within the user-defined
threshold η on attributes Z.



6 Valid covering selection

We now have all ingredients at hand to describe our approach for solving the valid
covering selection problem. LetQ={Q1,...,Q`} be the query workload consisting of `
CQ queries. For each query Qi the user specifies its importance pi, the set of attributes
Zi in Qi’s result schema to be approximated, and desired error bound δi. Furthermore,
a space budget B is given. Our approach works in four steps:

1. We collect the query column sets qcs(Qi,Zi), for i∈{1,...,`}. Recall that in order
to approximate Qi(D) on attributes Zi, one minimally needs to cover all attributes
in qcs(Qi,Zi).

2. Next, we inspect the DBMS catalog that, by using the size estimation method de-
scribed in Section 4, is now extended with quadruples (Rj ,Xj ,εj ,Nj), indicating
that there is an (Xj ,εj)-covering of size Nj of the instance Ij of Rj . Note that
there may be multiple coverings on each relation. Denote by cov(D) the collection
of all such quadruples in the catalog. Clearly, considering all possible coverings on
R would lead to exponentially many coverings in cov(D). Instead, we assume that
a set of candidate covering attributes is provided based on those that actually were
needed in the past or simply by inspecting the query column sets of the workload
queries.

3. We then solve a mixed integer linear program (MILP). Part of the solution of this
program are variables xij that, when set to 1, indicate that the ith covering in cov(D)
is used to approximate Qj .

4. We materialise all coverings (C1,d),...,(C`,d) identified in the previous step,
hereby avoiding replicating the same covering on a relation. Just like in BlinkDB,
the materialisation step is a one-time cost and if the query workload Q is represen-
tative for the past, present and future workload, the stored coverings can be used
for any future incoming queries as well. For now, to obtain an approximation for
queries in Q we evaluate Q̃j(Cj) on the stored coverings. Recall that Q̃j is the
relaxation of Qj by setting η to the appropriate value 0, εj , or 2εj , where εj is the
accuracy of covering (Cj ,dj) (See Section 5).

The MILP ensures that (i) all coverings fit into the available space budget; and
(ii) the best possible accuracies of these coverings are selected for approximating the
workload queries. Observe that, assuming that cov(D) is available, we only need to
evaluate the relaxed queries on coverings. No other query evaluation or access to the
data is needed. This implies, among other things, that the size of the MILP is indepen-
dent of the size of D and that solving it is a cost that is negligible. We verify this in the
experimental section. It remains to detail the mixed integer linear program.

B MILP formulation. Part of the MILP consists of a simple set covering prob-
lem: for each Qi∈Q find (R1,X1,ε1,N1),...,(Rn,Xn,εn,Nn) in cov(D) that cover
qcs(Qi,Zi). More specifically, if qcs(Qi,Zi)={(R1,Y1),...,(Rn,Yn)} then we must
have that Yi⊆Xi for i∈{1,...,n}. We encode this set cover problem in the MILP in
the standard way. Let I={1,...,|cov(D)|} and J={1,...,`}. For each (i,j)∈I×J and
relation name R∈R, we introduce a constant cRij and boolean variable xRij . Here, cRij=1



if the ith covering in cov(D) contains the attributes in qcs(Qj ,Zj) corresponding to R;
and cRij=0 otherwise. Furthermore, xRij=1 is to indicate that this covering on R is used
to approximateQj on the Zj attributes and xRij=0 indicates the opposite. To ensure that
qcs(Qj ,Xj) is fully covered we thus require that

∑

i∈I
cRijx

R
ij>1

(for each j∈J , R∈R such that (R,X)∈qcs(Qj ,Zj)
for some non-empty set X of attributes.)

In addition, all coverings in cov(D) that are used for approximating queries in Q need
to be stored and must fit within the available space budget B. For each i∈I we therefore
introduce a variable xi that will be set to 1 if any of the xRij’s for j∈J is 1; and xi
is set to 0 otherwise. In other words, xi=max{xRij |j∈J,R∈R} and indicates which
coverings in cov(D) are being used. We therefore require

xRij6xi (for each i∈I , j∈J , R∈R), and xi6
∑

j∈J,R∈R
xRij (for each i∈I).

The space budget constraint is simply given by
∑
i∈IxiNi6B, where Ni is the size of

the ith covering in cov(D). It remains now to relate the selected coverings (i.e., those
with xRij=1) to the error bound on the corresponding queryQj . Since this error is given
by err(Qj ,ε)=ε we need to determine the maximum ε used in the coverings forQj . For
this purpose we introduce variables yj , for j∈J , and require that

xRijc
R
ijεi6yj (for each i∈I , j∈J , R∈R)

where εi is the accuracy value of the ith covering in cov(D). Finally, the objective
function of the MILP is

minimise: max
j∈J

pj |δj−yj |,
where δj is the user-specified accuracy threshold. It is easily verified that the objec-
tive function can be transformed into a linear constraint, i.e., without using max and
absolute value |·|.
Example 5. We next illustrate the interaction of the space budget and accuracy thresh-
old in the valid covering selection method. Recall query Q′ from Example 4 and the
({EP,QT},8770)-covering, here denoted by C1, from example 2. Let C2 be another
covering of our Lineitem databaseD consisting of three buckets, i.e.,C2={t4,t7,t10}.
It is readily verified that C2 is a ({EP,QT},17520)-covering. Then we have cov(D)
with two coverings {C1,C2} of size 5 and 3 respectively. We know that qcs(Q′,Z)=
{EP,QT}. Let p1=1, δ1=5500 and B=4.

The MILP can now be formulated with the required parameters as above. In this
case the program has a simple task: to decide which of the two coverings should be
used to approximate Q′. Based on the constraints, an optimal solution would set x21 to
1, i.e., covering C2 is chosen since only C2 fits into B. Let us consider another scenario
where more space is available and we increase our space budget, i.e., B=7. Now, we
see that any of the two coverings can fit into the available budget. Note that the user
desired error bound remains unchanged. Again, by looking at the objective function of
the MILP, it is easy to see that an optimal solution would set x11 to 1, i.e., covering C1

is chosen because the propagated error for covering C1, (ε1=8770), is more close to
the desired error bound, δ1 than the propagated error of C2, (ε2=17520).



7 Experimental Evaluation

In this section, we evaluate the performance of the procedure Cover_Estim for estimat-
ing the size and computing the coverings of the data, and the accuracy of our solution
to the valid selection problem on individual queries and on queries in some workload.

B Evaluation setting. Our experiments were run on a GNU/Linux machine with Intel(R)
Xeon(R) CPU 2.90 GHZ (16 Cores) and 32 GB memory. We use PostgreSQL as the
underlying database system. All experiments were repeated five times and averages
are reported. We used two datasets: (i) the TPC-H benchmark data 1 (scale factor 1)
consisting of 9 million tuples (1GB); and (ii) the Big Data benchmark 2 (scale factor 1)
consisting of tables uservisits and rankings of 8 million (1.28GB) and 155 million
(25.4GB) tuples, respectively. For schema details on the datasets, consult the links in
the footnote. On the TPC-H data, our query workloadQ consists of variants of Q1, Q3,
Q6, Q13, Q19 of the TPC-H queries. For the Big Data benchmark data, we use a variant
of their scan and aggregate query. In all of our experiments we consider coverings on
attributes that have a sorted domain and use distance functions as described in Section 2.

B Covering computations. We first experimentally validate the efficiency of the pro-
cedure Cover_Estim, as described in Section 4, then illustrate how different datasets
can be compressed by means of coverings, and finally investigate the impact of the
parameter q on the quality and efficiency of the bounds returned by Cover_Estim.

Figure 4 shows the time to compute the size of coverings and the time to materialise
them on the Big Data benchmark dataset. More specifically, we varied (i) the sizes of the
input tables uservisits (1000k to 10000k) tuples and rankings (1000k to 10000k)
tuples; and (ii) the sets X of attributes to be covered. On the left, we report the times
for individual attributes duration and adrevenue in uservisits, and attributes avgdu-
ration and pagerank in rankings; on the right we consider the combined attribute sets
{duration, adrevenue} and {avgduration, pagerank}. We fixed ε to be 0.0001.

Not surprisingly, estimating the size of coverings requires considerably less time
than materialising them. Indeed, while the size estimation typically takes a couple of
seconds, the materialisation takes tens of seconds. This verifies our claim that extending
the DBMS’s catalog with quantitative information on coverings is feasible, especially
since this is a one-time cost and can be computed when the system is idle. We further
observe that the running times strongly depend on the set X of attributes. In particular,
the running time increases when X consists of more attributes. This is not unexpected
since a larger X results in a larger (X,ε)-covering. A similar behaviour is observed
when varying ε, i.e., the smaller the ε, the more time it takes to bound the size of the
coverings. Experiments on the TPC-H data gave analogous results (not reported).

We next considered the compressibility of the datasets. Figures 5 (a) and (b) show
the size of the resulting covering on the two tables in the Big Data benchmark data
set for varying values of ε and for the attribute sets considered earlier. We fixed the
size of both tables to 10 million tuples. Similarly, Figure 5 (c) shows the size of cover-
ings on the lineitem table in the TPC-H data set for the following sets of attributes:

1 http://www.tpc.org/tpch/
2 https://amplab.cs.berkeley.edu/benchmark/
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Fig. 4. Efficiency of Cover_Estim for computing size and materialisation of coverings.

{lextendedprice}, {lextendedprice, lquantity} and {lextendedprice, lquantity, llinesta-
tus}. One can see that the datasets compress rather well: for reasonable values of ε the
size of the corresponding covering provides a considerable reduction compared to the
size of the original data. In other words, even for a small space budget B one can find
accurate coverings of the data. As before, the more attributes are used in the covering,
the larger the covering.

Finally, Figure 5 (d) shows the impact of the parameter q in Cover_Estim. Recall
from Section 4 that q indicates how many attributes are processed by the recursive
bucketisation process, and consequently, how many attributes are treated by the naive
upper bound. Figure 5 (d) reports the effect on the lineitem table and attribute set
{lextendedprice, lquantity, ldiscount}. We let q=3 (most fine-grained upper bound),
q=2 (last attribute is treated by naive upper bound), and q=1 (last two attributes are
estimated by naive upper bound). Not surprisingly, the quality of the size estimate de-
grades with decreasing q. On the other hand, the running times for Cover_Estim de-
crease when more attributes are treated by the naive upper bound. Indeed, our exper-
iments (not reported due to space limitations) show that the size estimation for q=2
takes half the time when compared to q=3.

B Query approximation and valid covering selection. Our next set of experiments con-
cerns the use of coverings to approximate query results. We first consider individual
queries and compare the theoretical upper bound with the actual error made by our
query approximation method. Next, we consider a query workload and investigate our
solution to the valid cover selection problem.

Figure 6 shows the comparison of the actual error dZ(Q(D),Q̃(C)) with the the-
oretical upper bound err(Q,ε) given in Section 5, for varying sizes of coverings C of
D. More specifically, we express the size |C| of C as a percentage of the size |D| of
D and report the error err(Q,ε), where ε is the accuracy associated with the covering
C. The computation of dZ(Q(D),Q̃(C)) is done by evaluating Q(D) and Q̃(C) and
by computing the distance between them. Due to space limitations we only report two
settings. In Figure 6 (a) we consider the lineitem table of the TPC-H data and a con-
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Fig. 5. Compressibility of datasets and impact of parameter q.

stant selection query Q on the lextendedprice attribute. Coverings are on this attribute
only. In Figure 6 (b) we consider a join query Q (i.e., cartesian product followed by
equality selection) involving both tables in the Big data benchmark data. Coverings are
on attribute sets {duration, adrevenue} on uservisits and {avgduration, pagerank}
on rankings.

These experiments show that our approach actually provides better actual accu-
racy bounds on the query results than is anticipated by the theoretical upper bound. In
particular, we note that for highly compressible attributes, such as lextendedprice in
lineitem we can get an actual error of 0 using only a small fraction (13.2%) of the
original dataset. For this particular setting, Figure 7 (a) verifies that answering queries
on coverings takes less time than when using the original data and, more importantly,
that the error made by the approximation is within reasonable bounds. In particular,
Figure 7 (a) shows the actual error for the constant selection query on the TPC-H data
for various sizes of coverings and the time it takes to answer its relaxation on the cov-
erings. For example, evaluating the relaxation using 13.2% of the data takes 1/4 of the
time needed to evaluate the query on the original data without loss of accuracy.

Finally, we consider a query workloadQ of the 5 TPC-H queries mentioned earlier.
We extended the DBMS catalog with 50 different coverings (some of them over the
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same sets of attributes). We have arbitrarily chosen the weights and desired accuracy
thresholds for each of the queries. Figure 7 (b) shows the errors, |δi−err(Qi,εi)|, made
on each of the queries by using the coverings as identified by the MILP given in Sec-
tion 6, and this for varying space budgets B (700000 to 130000 tuples). As expected,
increasing B results in a better approximation of the queries. Furthermore, the increase
in accuracy when increasing the budget is more noticeable for queries with high impor-
tance (e.g., query Q19). Solving the MILP took a few milliseconds, which is negligible
in the overall query approximation process.

8 Related Work & Conclusions

Approximate query answering (AQA) in relational databases has been the subject of
extensive research. We refer to the recent survey [5] for more details. Most research has
focused on AQA systems that make use of concise data structures called synopses built
from the database. The synopses techniques can be divided into two broad categories:
non-sampling based, and sampling based. Examples of non-sampling based synopses
are wavelets [6], histograms [7, 8], and kernels [9]. Sampling-based methods are the



key components of AQA systems as described in [10, 11, 1], among others. Most of
these works, however, consider simple aggregate queries. A notable exception is [7]
where set-valued conjunctive queries are approximated by means of a rewriting in terms
of a compact histogram representation of the data. The result of this rewriting is a
histogram that is an approximation of the query result. Although close in spirit to our use
of coverings, [7] does not provide accuracy guarantees and cannot be easily generalised
to non-histogram synopses. By contrast, our notion of covering is more general and
we do provide guarantees. Furthermore, [7] considers single queries only and does not
impose an upper bound on the available space. Finally, we recall that the valid covering
selection problem is inspired by the sampling-based BlinkDB system [1], as mentioned
in the Introduction.

B Conclusions. We have presented a formal approach for space bounded query approx-
imation and experimentally validated it. Much more needs to be done, however: Can we
enrich coverings so that they become samples that can be used to approximate aggregate
queries? How to incorporate other error measures? Are there special classes of queries
for which better (more compact and accurate) coverings can be computed? Can our
query approximation be integrated in indexing methods or be part of the DBMS query
optimiser? How can a large number of coverings be efficiently stored and accessed?
Can our approach benefit from moving to other platforms, such as Apache Hive? These
are just a number questions that need to be addressed.
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