
On the Expressibility of Functions in XQuery
Fragments

Jan Hidders a Stefania Marrara b Jan Paredaens a

Roel Vercammen a,1

a University of Antwerp, Dept. Math and Computer Science,
Middelheimlaan 1, BE-2020 Antwerp, Belgium

b Universitá degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione,
Via Bramante 65, I-26013 Crema (CR), Italy

Abstract

XQuery is a powerful XML query language with many features and syntactic con-
structs. For many common queries we do not need all the expressive power of
XQuery. We investigate the effect of omitting certain features of XQuery on the
expressive power of the language. We start from a simple base fragment which can
be extended by several optional features being aggregation functions such as count
and sum, sequence generation, node construction, position information in for loops,
and recursion. In this way we obtain 64 different XQuery fragments which can be
divided into 17 different equivalence classes such that two fragments can express the
same functions iff they are in the same equivalence class. Moreover, we investigate
the relationships between these equivalence classes and derive some properties of
the fragments within these equivalence classes.

1 Introduction

XQuery [3], the W3C standard query language for XML, is a very powerful
query language which is known to be Turing Complete [7]. As the language in
its entirety is too powerful and complex for many queries, there is a need to
investigate the different properties of frequently used fragments. Most existing

Email addresses: jan.hidders@ua.ac.be (Jan Hidders),
marrara@dti.unimi.it (Stefania Marrara), jan.paredaens@ua.ac.be (Jan
Paredaens), roel.vercammen@ua.ac.be (Roel Vercammen).
1 Roel Vercammen is supported by IWT – Institute for the Encouragement of
Innovation by Science and Technology Flanders, grant number 33581.

Preprint submitted to Elsevier Science 1 June 2007

theoretical work focuses on XPath, a rather limited subset of XQuery. For
example, Benedikt, Fan, and Kuper studied structural properties of XPath
fragments [1], the computational complexity of query evaluation for a number
of XPath fragments was investigated by Gottlob, Koch, and Pichler in [5], and
Marx [12] increased the expressive power of XPath by extending it in order to
be first order complete. It was not until recently that similar efforts were made
for XQuery: Koch studies the computational complexity of query evaluation
for nonrecursive XQuery fragments without aggregation functions, position
information in for loops and sequence generation [8], Koch and Benedikt
study the relationship between similar fragments and fragments of first-order
logic with counters [2], Vansummeren looks into the well-definedness problem
for XQuery fragments [14], and the expressive power of the node construction
in XQuery is studied in [9].

In this article we investigate the expressive power of XQuery fragments in a
similar fashion as was done for the relational algebra [13] and SQL [11]. In or-
der to do this, we establish some interesting properties for these fragments. We
start from a small base fragment in which we can express many commonly used
features such as some built-in functions, arithmetic, boolean operators, node
and value comparisons, path expressions, simple for loops and XPath set op-
erations. This base fragment can be extended by a number of features that are
likely to increase the expressive power such as recursion, aggregate functions,
sequence generators, node constructors, and position information. The central
question is what features of XQuery are really necessary in these fragments
and which ones are only syntactic sugar, simplifying queries that were already
expressible without this feature. Our most expressive fragment corresponds to
LiXQuery [6], which is conjectured to be as expressive as XQuery.

This article is organized as follows. Section 2 introduces the syntax and the
semantics of the different XQuery fragments that we are going to analyze.
Section 3 presents the main result of the article, i.e., we partition the set
of fragments into classes of fragments with the same expressive power. In
Section 4 we present some expressibility results for these fragments and in
Section 5 we show some properties that hold for some of the fragments. These
results are combined in Section 6, where we prove the main result of the paper,
which was presented in Section 3. Finally, Section 7 outlines the conclusions
of our work.

2 XQuery Fragments

In this section we introduce the XQuery fragments whose expressive power
we study in the article. We use LiXQuery [6] as a formal foundation, which
is a light-weight sublanguage of XQuery, fully downwards compatible with

2

XQuery. The syntax and an informal description of the semantics of each
of the XQuery fragments is given in Subsection 2.1. In Subsection 2.2 we
introduce the essential notions of the formal semantics of LiXQuery that we
use throughout the paper. Finally, in Subsection 2.3 we show how some typical
XQuery constructs can be expressed in XQ∗.

2.1 Syntax and Informal Semantics

The syntax of the fragment XQ is shown in Fig. 1, by rules S1 to S18, to
which we will refer from now on as (S1-S18). Expressions that are not allowed
in a fragment definition must be considered as not occurring in the right hand
side of a production rule. As an example FunCall and Count do not occur in
rule (S2) for XQ. This syntax is an abstract syntax, i.e., it assumes that extra
brackets and precedence rules are added for disambiguation.

We briefly and informally discuss the semantics of the constructs in XQ. In
rule (S5) the expression () returns the empty sequence. In rule (S6) the built-
in functions are declared. The function string() gives the string value of an
attribute node or text node, and converts integers to strings. The function
xs:integer() 2 converts strings to integers. The function doc() returns the
document node that is the root of the tree that corresponds to the content of
the file with the name that was given as its argument, e.g., doc("file.xq")
indicates the document root of the content of the file file.xq. The func-
tion name() gives the tag name of an element node or the attribute name of
an attribute node. The function root() returns for a node the root of the
tree it belongs to. The function concat() concatenates strings. The functions
true() and false() return the boolean values true and false, respectively.
The function not() inverts the the boolean value of its argument.

In rule (S7) the expression if (e1) then e2 else e3 denotes the usual con-
ditional expression. In rule (S8) the expression for $x in e1 return e2 ex-
presses iteration where the result is computed by iterating over each element
in the sequence that is the result of e1, binding this element to $x and eval-
uating e2, and finally concatenating all the sequences that resulted from the
evaluation of e2. For example, the expression for $x in (1, 2, 3) return
($x, $x) returns the sequence 〈1, 1, 2, 2, 3, 3〉. In rule (S9) the expression let
$x := e1 return e2 returns the result of evaluating e2 with $x bound to the
result of e1. In rule (S10) the expression e1,e2 denotes sequence concatenation
that returns the concatenation of the results of e1 and e2. For example, if e1

returns 〈1, 2〉 and e2 returns 〈3, 4〉, then e1,e2 returns 〈1, 2, 3, 4〉. In the seman-
tics of XQuery single values such as numbers strings and nodes are assumed to

2 “xs:” indicates a namespace. Although we do not handle namespaces we use
them here to be compatible with XQuery.

3

(S1) 〈Query〉 → (〈FunDecl〉“;”)∗〈Expr〉

(S2) 〈Expr〉 → 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 | 〈AndOr〉 |

〈ValCmp〉 | 〈NodeCmp〉 | 〈ArithmExpr〉 | 〈Step〉 | 〈Path〉 | 〈Literal〉 |

〈EmpSeq〉 | 〈Constr〉 | 〈TypeSw〉 | 〈FunCall〉 | 〈Count〉 | 〈Sum〉 | 〈SeqGen〉

(S3) 〈Var〉 → “$”〈Name〉

(S4) 〈Literal〉 → 〈String〉 | 〈Integer〉

(S5) 〈EmpSeq〉 → “()”

(S6) 〈BuiltIn〉 → “string(”〈Expr〉“)” | “xs:integer(”〈Expr〉“)” |

“doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “root(”〈Expr〉“)” |

“concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” | “not(”〈Expr〉“)”

(S7) 〈IfExpr〉 → “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉

(S8) 〈ForExpr〉 → “for”〈Var〉(〈AtExpr〉)? “in”〈Expr〉 “return”〈Expr〉

(S9) 〈LetExpr〉 → “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉

(S10) 〈Concat〉 → 〈Expr〉“,”〈Expr〉

(S11) 〈AndOr〉 → 〈Expr〉(“and” | “or”)〈Expr〉

(S12) 〈ValCmp〉 → 〈Expr〉(“=” | “<”)〈Expr〉

(S13) 〈NodeCmp〉 → 〈Expr〉(“is” | “<<”) 〈Expr〉

(S14) 〈ArithmExpr〉 → 〈Expr〉 (“+” | “-” | “*” | “idiv”) 〈Expr〉

(S15) 〈Step〉 → “.” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”

(S16) 〈Path〉 → 〈Expr〉(“/” | “//”)〈Expr〉

(S17) 〈TypeSw〉 → “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+

“default” “return”〈Expr〉

(S18) 〈Type〉 → “xs:boolean” | “xs:integer” | “xs:string” |

“element()” | “attribute()” | “text()” | “document-node()”

(S19) 〈Count〉 → “count(” 〈Expr〉 “)”

(S20) 〈Sum〉 → “sum(” 〈Expr〉 “)”

(S21) 〈AtExpr〉 → “at” 〈Var〉

(S22) 〈SeqGen〉 → 〈Expr〉 “to” 〈Expr〉

(S23) 〈FunCall〉 → 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”

(S24) 〈FunDecl〉 → “declare” “function” 〈Name〉 “(” (〈Var〉 (“,” 〈Var〉)∗)? “)” “{” 〈Expr〉 “}”

(S25) 〈Constr〉 → “document”“{”〈Expr〉“}” | “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

“attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” | “text”“{”〈Expr〉“}” |

Fig. 1. Syntax for XQ∗ queries and expressions

be identical with a singleton sequence that contains them. So the expression
(1, 2) in fact denotes the concatenation of the sequences 〈1〉 and 〈2〉, which
is indeed the sequence 〈1, 2〉.

In rule (S11) we find the boolean conjunction and disjunction. The rule (S12)
introduces the comparison operators for basic values. Note that 2 < 10 and
"10" < "2" both hold. These comparison operators have existential seman-
tics, i.e., they are true for two sequences if there is a basic value in one sequence
and a basic value in the other sequence such that the comparison holds be-
tween these two basic values. Rule (S13) gives the comparison operators for
nodes where “is” tests the equality of nodes and “<<” compares nodes in

4

document order. Rule (S14) defines basic arithmetic operations.

In rule (S15) we find the basic steps in path expressions that navigate start-
ing from a so-called context item which is either a node or a basic value. The
expression . simply returns the context item. An expression of the form N
with N a valid element name returns all children of the context item which
are element nodes with the name N . Likewise the expression @N retrieves the
attribute nodes under the context item with name N . If the wildcard * is
used for N then these operations return respectively all element nodes and all
attribute nodes under the context item. Finally the text() expression returns
all text nodes under the context item. In rule (S16) the expressions for defin-
ing composing path expressions are defined. An expression e1/e2 returns the
sequence of nodes that is obtained by evaluating e1 and then for each node
in its result evaluate e2 with this node as the context item, and finally take
the union of all nodes in the results of e2. The resulting sequence is without
duplicates and sorted in document order, i.e., as the associates elements, at-
tributes, etc. are encountered in the document. The expression e1//e2 has the
same semantics except that we evaluate e2 not only for all the nodes in the
result of e1 but also for all their descendants.

Finally in rule (S17) the type-switch expression is defined, which allows us to
check the type of a node or basic value. For an example consider the following
expression:

for $x in ($y/@*, $y/*, $y/text())
return (
typeswitch ($x)
case element() return string($x)
case attribute() return concat("@",string($x))
default return "text")

If it is evaluated while $y is bound to the root node of an XML fragment
<test id="5"> <result/> scheduled </test> then the result will be the
sequence 〈"@id", "result", "text"〉.

The rules (S19-S25) define the constructs that we will use to define the dif-
ferent fragments of XQuery that we will consider. The rules (S19) and (S20)
introduce the operations for counting and adding the elements of a sequence.
The extension of the fragment XQ with these operations is denoted as XQC

and XQS respectively, and as XQC,S if both operations are allowed. The mo-
tivation for making these operations optional is that although they are in
practice often used their added expressive power is often not easy to establish.
See for example [11] for a discussion of this for SQL. In XQ these operations
seem to add expressive power because they are the only ones that can distin-
guish sequences with the same elements. The distinction between count() and

5

sum() is also interesting because the first ignores the numbers in a sequence
whereas the second takes them into account.

The rule (S21) defines the at clause which can be used to bind a variable
to the position of the current item in a sequence during the iteration of the
for expression. As an example the expression for $x at $y in ("a", "b",
"c") return ($y, $x) returns the sequence 〈1, "a", 2, "b", 3, "c"〉. The ex-
tension of XQ with this construct is denoted as XQat. The reason to make
this construction optional is that it seem to be the only construct that can
refer to the position of an item in a sequence.

The rule (S22) defines expressions of the form e1 to e2 which construct a se-
quence of numbers beginning from the result of e1 up to and including the re-
sult of e2. For example the expression 1 to 4 returns the sequence 〈1, 2, 3, 4〉.
The extension of XQ with this construct is denoted XQat. It is an interesting
operation since it is one of the few operations that allows the construction of
large results where the size depends not so much on the size of the input but
on the magnitude of the numbers in the input.

The rules (S23-S24) allow the application and definition of functions, and
specifically recursive functions. An expression of the form N(e1, . . ., en)
applies the function with name N to the results of e1, . . . , en. An expression of
the form declare function N(v1,. . .,vn){e} declares a function with name
N , formal arguments v1, . . . , vn and body e. Observe that if we disallow recur-
sion these constructs would not increase the expressive power of the language
since all function calls could be in-lined. The extension of XQ with these con-
structs is denoted as XQR. Adding recursion will obviously greatly increase
the expressive power and make the language computationally complete for op-
erations over strings and integers but, as will be shown later, there may still
be operations over XML data and/or sequences that cannot be expressed. For
example, XQR cannot express the count() function, which can be informally
explained by saying that there is no operation in XQR that can distinguish
sequences that contain the same elements. There are for example no opera-
tions in XQ that allow us to select the head or the tail of a list, as is possible
in LISP. Clearly with such operations the count() could have been expressed
with recursive functions. This will be discussed more formally later on.

Finally the rule (S25) introduces expressions for creating new nodes. An ex-
pression document{e} creates a new document node with as its contents a
deep copy of the resulting sequence of e. An expression element{e1}{e2} cre-
ates a new element node with a name computed by e1 and a deep copy of
the result of e2 as its contents. Note that these contents include any attribute
nodes that should be associated with the new node. Finally, an expression
text{e} constructs a new text node with the string computed by e as its
string value. The extension of XQ with these expressions is denoted as XQctr.

6

XQ (S1-S18) basic fragment

XQC + (S19) count(e)

XQS + (S20) sum(e)

XQat + (S21) for $x at $y in e1 return e2

XQto + (S22) e1 to e2

XQR + (S23-S24) recursive functions

XQctr + (S25) node construction

Fig. 2. Definition of XQuery fragments

Clearly these operations add expressive power since without them one cannot
construct new nodes, but they also do so if we only consider functions that
return no new nodes in the final result. For example, in XQ we cannot distin-
guish the sequences 〈1, 2〉 and 〈2, 1〉, but if we have node construction then we
can convert them to the fragments <a> 1 2 and <a>
2 1 which can be distinguished. Informally this might
be explained by saying that node construction can give us access to the se-
quence order by converting it into document order. This will be discussed in
more detail later on.

Summarizing, we use 6 attributes for XQ fragments, namely C, S, at, to, R
and ctr (cf. Fig. 2 for the syntax of the attributed fragments). These anno-
tations may be freely combined such that, for example, XQctr

C,S,at denotes the
fragment with node construction, count(), sum() and the at clause in for ex-
pressions. For the largest fragment, XQR,to,ctr

C,S,at expressed by rules (S1-S25), we
additionally introduce the short-hand XQ∗. Since there are 6 attributes they
define 64 fragments of XQuery. The main goal of this article is to investigate
and to compare the expressive power of these fragments.

The following auxiliary definitions are used throughout the article:

Definition 2.1 The language L(XF) of an XQuery fragment XF is the (in-
finite) set of all expressions that can be generated by the syntax rules for this
fragment with 〈Query〉 as start symbol. The set Φ is the set of all 64 XQuery
fragments defined in Fig. 2.

Similar to LiXQuery, we ignore static typing and do not consider namespaces 3 ,
comments, processing instructions, and entities.

3 In types and built-in functions, such as xs:integer, the xs: part indicates a
namespace. Although we do not handle namespaces we use them here to be com-
patible with XQuery

7

2.2 Formal Semantics

The semantics of our XQuery fragments is the same as that of LiXQuery and
downwards compatible with the XQuery Formal Semantics [4]. Expressions
are evaluated against an XML store which contains XML fragments created
as intermediate results, and all the web documents. This assumption models
correctly the formal semantics since each time a doc function is called for the
same document, the same document node is returned. We now introduce some
notations that we use in this article. The set S is the set of all strings, N ⊆ S
is the set of strings that may be used as tag names, Z is the set of all integers,
N ⊂ Z is the set of all positive integers, B is the set {true, false} of boolean
values, and A = Z ∪ B ∪ S is the set of all atomic values. The set V is the
set of all nodes. The domain and the range of a function f are denoted by
respectively dom(f) and rng(f).

Definition 2.2 (XML Store) An XML store is a 6-tuple St = (V, E,&
, ν, σ, δ) with

• V is a finite subset of V; we write V d for V ∩ Vd (resp. V e for V ∩ Ve, V a

for V ∩ Va, V t for V ∩ V t);
• (V, E) is an directed acyclic graph (with nodes V and directed edges E)

where each node has an in-degree of at most one, and hence it is composed
of trees; if (m, n) ∈ E then we say that n is a child of m; 4 we denote by
E∗ the reflexive transitive closure of E;

• & is a total order on the nodes of V ;
• ν : V e ∪ V a → N labels the element and attribute nodes with their node

name;
• σ : V a ∪ V t → S labels the attribute and text nodes with their string value;
• δ : S → Vd a partial function that associates with a URI or a file name, a

document node. It is called the document function. This function represents
all the URIs of the Web and all the names of the files, together with the
documents they contain. We suppose that all these documents are in the
store.

The following properties have to hold for an XML store:

(1) each document node of V d is the root of a tree and has only one child
which is an element node;

(2) attribute nodes of V a and text nodes of V t do not have any children;

4 As opposed to the terminology of XQuery, we consider attribute nodes as children
of their associated element node. The definitions of parent, descendant and ancestor
are straightforward.

8

nd
0

ne
1

ne
2

ne
3

nt
4

ne
5

nt
6

ne
7

nt
8

Fig. 3. XML tree of Example 2.1

(3) the & -order is the document order over (V, E) such that for all trees it
corresponds to its preorder, i.e.:
(a) if (n1, n2) ∈ E∗ and n1 *= n2 then n1 & n2;
(b) if (m, n1), (m, n3) ∈ E, (n1, n2) ∈ E∗, and n1 & n3 then n2 & n3;

(4) nodes of two different trees are not “mixed” in document order, i.e., if
(n1, n2), (n1, n4) ∈ E∗ and n2 & n3 & n4 then (n1, n3) ∈ E∗.

(5) in the & -order attribute children precede the element and text children,
i.e., if (m, n1), (m, n2) ∈ E, n1 & n2 and n2 ∈ V a then n1 ∈ V a;

(6) there are no adjacent text children, i.e., if (m, n1), (m, n2) ∈ E, n1, n2 ∈
V t, and n1 & n2 then there is an n3 ∈ V e with n1 & n3 & n2;

(7) for all text nodes nt of V t holds σ(nt) *= "";
(8) all the attribute children of a common node have a different name, i.e.,

if (m, n1), (m, n2) ∈ E and n1, n2 ∈ V a then ν(n1) *= ν(n2).

Note that this definition slightly differs from our original definition of an XML
Store [6], since we now have included the document order in the store instead
of the sibling order.

An item of an XML store St is an atomic value in A or a node in St. We
denote the empty sequence as 〈〉, non-empty sequences as for example 〈1, 2, 3〉
and the concatenation of two sequences l1 and l2 as l1 ◦ l2. A sequence over
a store St is a sequence of items of St. We now give an example to illustrate
the definition of a store.

Example 2.1 Let St = (V, E,<, ν,σ, δ) be an XML store with one document
“doc.xml”, which is shown in Fig. 3.

• The set of nodes V consists of V d = {nd
0}, V e = {ne

1, n
e
2, n

e
3, n

e
5, ne

7}, V t =
{nt

4, n
t
6, n

t
8}, V a = ∅.

• The set of edges is E = {(nd
0, n

e
1), (n

e
1, n

e
2), (n

e
1, n

e
7), (n

e
2, n

e
3), (ne

2, n
e
5), (n

e
3, n

t
4),

(ne
5, n

t
6), (ne

7, n
t
8)}.

• The document order & is defined by nd
0 & ne

1 & ne
2 & ne

3 & nt
4 & ne

5 &

9

nt
6 & ne

7 & nt
8.

• Furthermore ν(ne
1) = "a", ν(ne

2) = ν(ne
7) = "b", ν(ne

3) = ν(ne
5) = "c",

σ(nt
4) = t1, σ(nt

6) = t2, σ(nt
8) = t3, and δ(“doc.xml”) = nd

0.

The store in this example contains only one tree, which models the following
XML fragment: <a><c>t1</c><c>t2</c>t3.

For the evaluation of queries we do not only need an XML store, but also an
environment, which contains information about functions, variable bindings,
the context sequence, and the context item. This environment is defined as
follows:

Definition 2.3 (Environment) An environment of an XML store St is a
4-tuple En = (a,b,v,x) where a : N → N ∗ is a partial function that maps a
function name to its formal arguments ; b : N → L(XQ∗) a partial function
that maps a function name to the body of the function; v : N → (V ∪ A)∗

a partial function that maps variable names to their values; and x which is
undefined or an item of St and indicates the context item 5 .

Note that we do not allow multiple functions to have the same name, whereas
this is allowed in XQuery as long as these functions have a different arity. If En
is an environment, n a name, and y an item then we let En[v(n) -→ y] denote
the environment that is equal to En except that the function v maps n to y.
We write St, En . e ⇒ (St′, v) to denote that the evaluation of expression e
against the XML store St and environment En of St may result in the new
XML store St′ and a result sequence v over St′, i.e., v can only contain nodes
of St′ and atomic values.

The semantics of XQ∗ expressions is defined by means of reasoning rules,
following the notation detailed in [6].

2.3 Discussion

We conclude this section by giving more motivation for the XQuery sublan-
guage XQ∗ that we consider in this paper. First we compare XQ∗ with LiX-
Query to show that the few syntactic changes from LiXQuery in XQ∗ does
not affect the expressive power. Next, we show how some typical XQuery
constructs can be expressed in XQ∗.

5 The context item is a node against which steps in path expressions are evaluated.
It is used in rules (S15-S16) of Fig. 1

10

2.3.1 Comparison with LiXQuery

There are some features left out from LiXQuery in the definition of XQ∗, such
as the union, the filter expression, the functions position() and last(), and
the parent step (..), but these features can be easily simulated in XQ∗, as
we will show now. Hence, we claim that XQ∗ has the same expressive power
as LiXQuery.

The first feature that is left out is the union e1|e2 which concatenates the
results of e1 and of e2, removes any duplicates and sorts the result in document
order. This is equivalent to (e1,e2)/., because the /. expression at the end
removes the duplicate nodes and sorts the result sequence by document order.

The second feature in LiXQuery, but not in XQ∗, is the filter expression
e1[e2]. Its semantics is that we iterate over the result of e1 and select each
node for which e2 evaluates to true while taking this node as the context item.
For example, (1, 2, 3, 4)[. > 2] returns the sequence 〈3, 5〉. A simulation
of e1[e2] can be done in two steps. First, we construct e′2 from e2 by replacing
every subexpression that depends upon the context item from e1, i.e., is not
nested in the e′2 of e′1[e

′
2], e′1/e

′
2 or e′1//e

′
2, is replaced as follows: the expression

. is replaced with $dot, and all expressions e of the forms N , *, @N , @* and
text() are replaced with $dot/e. After this we can simulate e1[e2] with:

for $dot in e1 return (
if (e′2) then $dot else ())

Note that another possible simulation is e1/(if (e2) then . else ()) but
only if the result contains only nodes and no basic values.

The third feature are the functions position() and/or last(). They can be
used in every expression that is evaluated for a context item that is taken
from some sequence. These are the subexpressions e2 in expressions of the
forms e1/e2, e1//e2 and e1[e2]. The meaning of these functions is for e1/e2

and e1[e2] the same: position() refers to the position of the context item
in the result sequence of e1 and last() refers to the position of the last
item in this sequence, i.e., the length of the sequence. For example, ("a",
"b", "c", "d")[position() > 2] returns 〈"c", "d"〉 and ("a", "b", "c",
"d")[position() = last()] returns 〈"d"〉. Another example is the expres-
sion a/(if (position() = 2) then . else ()) which returns the second
a element child of the context item. For expressions of the form e1//e2 the
semantics of position() and last() are similar except that the context se-
quence to which position() and last() refer is differently defined. Recall
that for each node n in the result of e1 the evaluation iterates over n and
its descendants and evaluates e2. During the evaluation of e2 the sequence
consisting of n and its descendants is assumed to be the context sequence.

11

We can simulate e1[e2] with position() and/or last() in e2 as follows,
assuming e′2 is constructed from e2 as previously explained for the preceding
simulation of e1[e2] plus that in addition position() and last() are replaced
by the variables $pos and $last 6 :

let $seq := e1 return
let $last := count($seq) return
for $dot at $pos in e1 return
if (e′2) then $dot else ()

The simulation of e1/e2 with position() and/or last() in e2 is similar ex-
cept that here the results of e2 are returned and the final result is sorted in
document order by applying /.:

let $seq := e1 return
let $last := count($seq) return
(for $dot at $pos in e1 return e′2)/.

The simulation of e1//e2 with position() or last() in e2 is accomplished
by rewriting it as e1/((.//.)/e2) and reducing it thus to the previous case.

The last feature that is not in XQ∗ is the parent step .. that retrieves the
parent of the context item and which we can simulate as follows:

for $dot in root(.)//. return (
for $chl in ($dot/*, $dot/text(), $dot/@*) return (
if ($chl is .) then $dot else ()))

The variable $dot iterates over all nodes of the tree that contains the context
item and selects a node if one of its children (element, attribute, or text nodes)
equals the context item.

Since we have shown that all features that are in LiXQuery but not in XQ∗

can be simulated in XQ∗, it follows that XQ∗ has the same expressive power
as LiXQuery.

2.3.2 Simulation of (other) XQuery Features

We can simulate many XQuery features that are not in XQ∗ by using a sub-
language of XQ∗. For example, since the “=” comparison has an existential
semantics, the emptiness test empty(e1) can be expressed in XQ as follows:

if (1 = (for $y in e1 return 1)) then true() else false()

6 We assume, w.l.o.g., that $pos and $last do not occur in e2.

12

Furthermore, all XPath axes can be simulated in XQ. We illustrate this claim
by giving the simulation of following-sibling::node():

for $dot in ../(*, text()) return (
if (. << $dot) then $dot else ())

The final XQuery feature that we use to illustrate the claim that most typical
XQuery expressions can be expressed in XQ∗ is the order by clause:

for $x at $y in e1 order by e2 return e3

We show that we can simulate this expression in the fragment XQC,at, i.e.,
without using recursive functions. Assume that the expression in e2 yields
exactly one item when evaluated against an item in the result of e1. If the
evaluation of e1 yields n items, then the sequence that we have to order ac-
cording to the order by clause e2 has also n items. We will create a permutation
of the numbers 1 to n in a variable $ordByPos such that the ith item in this
sequence is j iff the jth item in the result sequence of e1 is the smallest item in
the result of e1 with at least i− 1 items smaller or equal. In order to obtain a
stable order, we also have to incorporate the position of the items in the result
of e1. The simulation of the order by can then be performed as follows:

let $inExpr := e1 return
let $unordBy := (for $x at $y in $inExpr return (e2)) return
let $ordByPos := (
for $n at $p in $unordBy return (
for $n2 at $p2 in $unordBy return (
let $smaller := (for $n3 at $p3 in $unordBy

return if ($n3 < $n2) then $n3 else ())
let $equalBef := (for $n3 at $p3 in $unordBy

return if (($n3 = $n2) and ($p3 < $p2))
then $n3 else ())

if (count(($smaller,$equalBef)) = $p) then $p2 else ()
)

)
) return
let $ordInExpr := (
for $x at $pos in $inExpr return
for $y in $ordByPos return
if ($y = $pos) then $x else ()

) return
for $x at $pos in $ordInExpr return
let $y := (for $xx at $yy in $ordByPos

return if ($xx = $pos) then $yy else ())
return e3

13

3 Expressive Power of the Fragments

The main contribution of this paper consists of showing that some XQ∗ fea-
tures can be simulated in some fragments that do not contain them and some
can not. We study the relationships between all 64 fragments in terms of ex-
pressive power. In order to be able to compare fragments, we first have to
define what “equivalent” and “more expressive” means for XQuery fragments.

We define the expressive power of an XQuery fragment as the set of XQuery
functions that can be expressed in this fragment. XQuery functions are defined
as partial multivalued functions that map a store and a variable assignment
over that store to a new store and a result sequence over this result store.
We assume that the result store does not contain nodes that are no longer
reachable, since such nodes can be safely garbage collected. More precisely,
the garbage collection is defined as follows:

Definition 3.1 (Garbage Collection) The garbage collected version Γs(St)
of a store St = (V, E, ν, σ, δ) relative to a sequence s is the store obtained by
removing all trees from St for which the root node is not in rng(δ) and for
which no node of the tree is in s.

We now define the notion of XQuery function as follows:

Definition 3.2 (XQuery function) The XQuery function corresponding to
an expression e is {((St,v), (Γv(St′), v)) | St, (∅, ∅,v,⊥) . e ⇒ (St′, v)}. An
element of this set is called an evaluation pair. If two expressions e1 and
e2 have the same corresponding XQuery functions then they are said to be
equivalent, denoted as e1 ∼ e2.

This measure of expressive power can be justified by the XQuery Process-
ing Model [4]. There it is possible to set variables in an initial environment.
Moreover, the serialization of the result sequence is optional and an XQuery
query can be embedded into another processing environment, which can then
inspect the node identities that are returned.

Definition 3.3 (Equivalent Fragments) Recall that Φ is the set of XQuery
fragments as defined in Fig. 2. Consider two XQuery fragments XF1, XF2 ∈
Φ.

• XF1 4 XF2 ⇐⇒ ∀e2 ∈ L(XF2) : ∃e1 ∈ L(XF1) : e1 ∼ e2

(XF1 can simulate XF2)
• XF1 ≡ XF2 ⇐⇒ ((XF1 4 XF2) ∧ (XF2 4 XF1))

(XF1 is equivalent to XF2)
• XF1 : XF2 ⇐⇒ ((XF1 4 XF2) ∧ (XF1 *≡ XF2))

(XF1 is more expressive than XF2)

14

XQ

XQat

XQat,C

XQC
XQS

XQC,S

XQat,S

XQat,C,S

XQto

XQto
C

XQto
S

XQto
C,S

XQto
at. . .

XQto
at,C,S

XQR

XQR,to

XQR
C

XQR
S. . .

XQR,to
C,S

XQR
at. . .

XQR,to
at,C,S

XQctr

XQctr
C

XQctr
at

XQctr
at,C

XQctr
S. . .

XQctr
at,C,S

XQctr,to

XQctr,to
at

XQctr,to
C. . .

XQctr,to
at,C,S

XQctr,R

. . .
XQctr,R,to

at,C,S

S to R

C

at

Fig. 4. Equivalence classes of XQuery fragments

In this definition, the relation4 is a partial order on Φ, and≡ is an equivalence
relation on Φ. We use these relations to investigate the relationships between
all XQuery fragments defined in Section 2. We show that the equivalence
relation ≡ partitions Φ (containing 64 fragments) into 17 equivalence classes.
In Fig. 4 we show these 17 equivalence classes and their relationships. Each
node of the graph represents an equivalence class, i.e., a class of XQuery
fragments with the same expressive power. The white and grey nodes represent
classes with and without node construction, respectively. Each edge is directed
from a more expressive class C1 to a less expressive one C2 and points out
that each fragment in C1 is more expressive than all fragments of C2 (i.e.,
∀XF1 ∈ C1, XF2 ∈ C2 : XF1 : XF2).

Theorem 3.1 For the graph in Fig. 4 and for all fragments XF1, XF2 ∈ Φ
it holds that

• XF1 ≡ XF2 ⇐⇒ XF1 and XF2 are within the same node
• XF1 : XF2 ⇐⇒ there is a directed path from the node containing XF1

to the node containing XF2

The proof of this theorem is given in Section 6. The lemmas of Section 4 will
be used to show that all fragments that are in the same node have the same
expressive power and the lemmas of Section 5 to show that all different nodes
in the graph have a different degree of expressive power.

15

Informally, the dotted borders in Fig. 4 divide the set of fragments (Φ) in two
parts: one in which the attribute that labels the border can be expressed and
one in which this attribute cannot be expressed. The arrows that cross the
borders all go in one direction, i.e., from the set of fragments where you can
express a certain construct to the set where you cannot express it. We call
the set of fragments that can simulate the construct the right-hand side of the
border and the other set the left-hand side of the border. The correctness of the
dotted borders can be proven by showing that something can be expressed in
the least expressive fragments of the right-hand side that cannot be expressed
in any of the most expressive fragments of the left-hand side. In the following
two sections we give the necessary lemmas needed to complete this proof.

4 Expressibility Results

Adding extra features to XQuery fragments does not always extend the set of
XQuery functions expressible in the fragment. In this section we show how to
simulate certain features in fragments that, syntactically, do not include this
feature.

First we show that we can count the number of items in a sequence in XQat

and XQS, which is needed to show we can count in fragments at the right-hand
side of the C-line in Fig. 4.

Lemma 4.1 The count operator can be expressed in XQat.

Proof. From Subsection 2.1 we know that empty(|e1) can be expressed in
XQ. Counting the items of a sequence corresponds to finding the maximal
position of an item in a sequence. Hence count(|e1) is equivalent to :
let $positions := (for $i at $pos in (e1) return $pos) return
for $a in (0, $positions) return
if (empty(
for $b in $positions return
if ($b > $a) then 1 else ()

)) then $a else ()
This expression always returns exactly one item, since (0, $positions) does
not contain duplicate values, and hence there is exactly one item which is the
largest.

!

Lemma 4.2 The count operator can be expressed in XQS.

Proof. The expression sum(for $i in (e1) return 1) is equivalent to
count(e1).

16

!

The following lemma shows that we can simulate the sequence generation from
the to operator in all fragments that have recursive function definitions and
hence shows that we can express it in all fragments on the right-hand side of
the to-border in Fig. 4.

Lemma 4.3 The to operator can be expressed in XQR.

Proof. We can define a recursive function to such that e1 to e2 is equivalent
to to((e1), (e2)) as follows:
declare function to($i ,$j) {
if ($j < $i) then () else (to($i, $j - 1), $j)

};

!

We now show that we can compute the sum of a list of numbers using the to
operator and the count function, which is used to show that in all fragments
on the right-hand side of the S-border in Fig. 4 we can simulate sum.

Lemma 4.4 The sum operator can be expressed in XQto
C .

Proof. The following expression is equivalent to sum(e1):
count(
for $i in (e1) return
for $j in (1 to $i) return 1

)

!

The following Lemma gives another way to simulate count. In this simulation
we use node construction and recursive function definitions. Together with
Lemma 4.1 and Lemma 4.2 this shows that we can simulate count in all
fragments at the right-hand side of the C-border in Fig. 4.

Lemma 4.5 The count operator can be expressed in XQctr,R.

Proof. We will show how to define a recursive function count-distinct-nodes
such that count(e1) is equivalent to following XQctr,R expression:

count-distinct-nodes(
for $e in e1 return element {"e"} {()}

)

This expression generates as many new nodes as there are items in the in-

17

put e1 and then applies a newly defined function count-distinct-nodes
to this sequence, which counts the number of distinct nodes in a sequence.
This can be done by decreasing the input sequence of the function call to
count-distinct-nodes by exactly one node in each recursion step, which is
possible since all items in the input sequence of count-distinct-nodes have
a different node identity and hence we can remove each step the first node
(in document order) of the newly created nodes. More precisely, the function
count-distinct-nodes can be defined as follows:

declare function count-distinct-nodes($seq) {
if (empty($seq)) then 0
else (
let $newseq := (
for $e1 in $seq return
if (empty(
for $e2 in $seq return
if ($e2 << $e1) then 1 else ()

)) then () else $e1
)
return (1 + count-distinct-nodes($newseq))

)
}

Note that, since the count operator returns only atomic values, none of the
newly created nodes that were used to count the number of items in the
sequence is reachable after applying garbage collection.

!

Finally, we show how to simulate the at clause of a for expression by us-
ing node construction and count. This shows that we can simulate at in all
fragments at the right-hand side of the at-border in Fig. 4.

Lemma 4.6 The at clause in a for expression can be expressed in XQctr
C .

Proof. We transform sequence order into document order by creating new
nodes as children of a common parent such that the new nodes contain all
information of each item in the sequence and they are in the same order as
the items in the original sequence. First, in XQctr

C we can express the (non-
recursive) functions pos and atpos, which respectively give the position of a
node in a document-ordered duplicate-free sequence and return a node at a
certain position in such sequence. This can be done as follows:

declare function pos($node, $seq) {
count(for $e in $seq return
if ($e << $node) then 1 else ()

) + 1

18

};

declare function atpos($seq, $pos) {
for $node in $seq return
if (pos($node, $seq) = $pos) then $node else ()

};

Let us assume that we can define XQctr
C functions encode and decode such

that encode translates an arbitrary sequence to an ordered and duplicate-free
sequence of nodes while encoding each item in the original sequence into one
node at the same position and the function decode can retrieve the original
item given this node and the original sequence. Then the following XQctr

C

expression is equivalent to the XQctr
C,at expression “for $x at $pos in e1

return e2” (where e1 and e2 are XQctr
C expressions):

let $seq := (e1) return
let $newseq := encode($seq) return
for $x in $newseq
return (
let $pos := pos($x, $newseq) return
let $x := decode($x, $seq)
return (e2))

Because the result sequence of e1, $seq, is used both in the in clause of the
for expression and as actual parameter for the decode function, we have to
assign this result to a new variable, since by simple substitution a node con-
struction that is done in e1 would be evaluated more than once. Furthermore
the expression e2 is guaranteed to have the right values for the variables $x
and $pos iff the function decode behaves as desired. We can assume, w.l.o.g.,
that e2 does not use variables $seq and $newseq, since they are used in the
simulation.

We now take a closer look at how to define the functions decode and encode.
The function encode needs to create a new sequence in which we simulate all
items by creating a new node for each item. By adding these nodes as children
of a newly constructed element (named newseq) we ensure that the original
sequence order is reflected in the document order for the newly constructed
sequence. Atomic values are simulated by putting their value as text node in
an element which denotes the type of atomic value. Encoding nodes cannot
be done by making a copy of them, since this would discard all information
we have about the node identity. Therefore we store for a node all information
we need to retrieve the node later using the function decode. We do this by
storing the root of the node and the position where the node is located in the
descendant-or-self list of its root node.

For example, consider the Store St of Example 2.1, which only has one tree.

19

Encoding the sequence 〈1, ne
2, “c”〉 over this store results into the creation of

the following new element:

<newseq>
<int>1</int>
<node root="1" descpos="3"/>
<str>c</str>

</newseq>

The encoding and decoding is performed by the following two functions:

declare function encode($seq) {
let $rootseq := (
for $e in $seq return

typeswitch($e)
case element() return root($e)
case attribute() return root($e)
case document-node() return root($e)
default return ()

)/. return
let $newseq := element {"newseq"} {
for $e in $seq
return

typeswitch($e)
case xs:integer return element {"int"} {$e}
case xs:string return element {"str"} {$e}
case xs:boolean return element {"bool"} {if ($e) then 1 else 0}
default return element {"node"} {
attribute {"root"} {pos(root($e), $rootseq)},
attribute {"descpos"} {pos($e, root($e)//.)}

}
}
return $newseq/*

};

declare function decode($node, $seq) {
let $rootseq := (

for $e in $seq return
typeswitch($e)
case element() return root($e)
case attribute() return root($e)
case document-node() return root($e)
default return ()

)/. return
if (name($node) = "int") then xs:integer($node/text())
else if (name($node) = "str") then string($node/text())
else if (name($node) = "bool") then

20

if (xs:integer($node/text()) = 1) then true() else false()
else if (name($node) = "node") then (
let $root := atpos(rootseq($seq), xs:integer($node/@root))
return atpos($root//., xs:integer($node/@descpos))

)
else ()

};

Note that none of the previous functions used recursion, so we do not actually
need functions since we could inline the function definitions in the expressions.
Furthermore there is no newly created node in the result sequence of the
simulation, so all newly created nodes are garbage collected and hence at can
be expressed in XQctr

C .
!

5 Properties of the Fragments

The previous section provided some expressibility results. In this section we
prove that certain fragments do not have certain properties, hence they have
different degrees of expressive power.

5.1 Set Equivalence and Bag Equivalence

The first two properties just claim that there are fragments in which it is not
possible to distinguish between sequences with the same set or bag represen-
tation. To formalize this notion we define set equivalence and bag equivalence
between environments and between sequences. In this definition Set (Bag)
maps a sequence to the set (bag) of its items.

Definition 5.1 Consider a store St and two environments En = (a,b,v,x)
and En′ = (a′,b′,v′,x′) over the store St. We call En and En′ set-equivalent
iff it holds that a = a′, b = b′, dom(v) = dom(v′) and ∀s ∈ dom(v) :
Set(v(s)) = Set(v′(s)), and finally x = x′.
The environments En and En′ are called bag-equivalent iff they are set-
equivalent and it holds that ∀s ∈ dom(v) : Bag(v(s)) = Bag(v′(s)).

Example 5.1 shows an expression for which it holds that all result sequences
in an evaluation against an environment in which $seq is bound to a sequence
v have the same set representation. This result holds because it holds for all
result sequences in an evaluation against another environment in which $seq
is bound to a sequence v′ for which it holds that Set(v) = Set(v′). This
observation is generalized in Lemma 5.1.

21

Example 5.1 Consider the following XQ expression:

for $x in $seq return
for $y in $seq return (if ($x > $y) then $x else ($x * $y))

If $seq is 〈1, 2〉 then the result is 〈1, 2, 2, 4〉, and if $seq is 〈2, 1, 2〉 then the
result is 〈4, 2, 4, 2, 1, 2, 4, 2, 4〉. Both result values have the same set represen-
tation {1, 2, 4}.

Lemma 5.1 Let St be a store, En,En′ two set-equivalent environments that
have only function bodies which are XQR expressions, and e an expression in
XQR. If the result of e is defined for both En and En′, then for each sequence r
and r′ for which it holds that St, En . e ⇒ (St, r) and St, En′ . e ⇒ (St, r′) 7 ,
it also holds that Set(r) = Set(r′).

Proof. This lemma is proven by induction on the derivation tree in which
each node corresponds to a construct of rules (S3-S17,S23-S24) in Fig. 1.
Obviously, variables, literals, and empty sequences return sequences with the
same set representation when evaluated against set-equivalent environments.
If we apply a comparison between two sequences v1 and v2 then the result is the
same as when applied to v′1 and v′2 if v′1 and v′2 have the same set representation
as respectively v1 and v2. This is due to the existential semantics of the value
comparison operators and the fact that node comparison operators are only
defined for single nodes.

We now consider the for expression. By induction we know that the set of
items i in the result sequence of the in clause of a for expression is the same
when evaluated against set-equivalent environments En and En′. Let E and
E ′ denote the set of environments which contain all extensions of respectively
En and En′ with a binding of the loop variable to an item in the result se-
quence of the evaluation of the in-clause against respectively En and En′. It
can be shown that the relation “is a set-equivalent environment” between E
and E ′ is a total and surjective function, that is, for each evaluation against an
environment En1 in E there is an evaluation against a set-equivalent environ-
ment En2 in E ′ and vice versa. This follows intuitively from the fact that En1

is En but with the loop variable bound to a certain item i and En2 is En′ but
with the loop variable also bound to i. By induction we then know that En1

yields a result sequence with the same set representation as the result of En2

and vice versa. Hence it follows that the concatenation of the result sequences
of all evaluations yields result sequences with the same set representation.

7 Since e does not contain node constructors in its subexpressions, it is easy to see
that all subexpressions are evaluated against the same store St and that the result
store of all these subexpressions will also be St.

22

In a similar way, we can show that all other expressions in this XQuery frag-
ment also return sequences with the same set representation when applied to
set-equivalent environments, since the result sequences of their subexpressions
have the same set representation.

!

The previous lemma is combined with the following lemma for proving that
fragments on the left-hand side of the C-border in Fig. 4 cannot express count.

Lemma 5.2 The fragment XQC does not have the property of Lemma 5.1.

Proof. Consider an environment En, then En1 = En[v(“seq”) -→ 〈1, 1〉] and
En2 = En[v(“seq”) -→ 〈1〉] are two set-equivalent XQR environments. The
expression count($seq) returns 〈2〉 in the evaluation against En1 and 〈1〉
against En2.

!

Note that the previous lemma implies that we cannot define full list or tree
equality in XQR. Similar to the result of Lemma 5.1, there is also a fragment
in which we cannot distinguish between lists with the same bag representation.
The following lemma states this more precisely.

Lemma 5.3 Let St be a store, En,En′ two bag-equivalent environments that
have only function bodies which are XQR

C expressions, and e be an expression
in XQR

C. If the result of e is defined for both En and En′, then for each
sequence r and r′ for which it holds that St, En . e ⇒ (St, r) and St, En′ .
e ⇒ (St, r′), it also holds that Bag(r) = Bag(r′).

Proof. For all XQR
C expressions we can show similar to the proof of Lemma 5.1

that evaluations against bag-equivalent environments result in bag-equivalent
result sequences. The only new feature is the count() function, which returns
the same value when applied to sequences with the same bag representation.
Moreover, we have to show for the for expression that there is a bijection
between the sets E and E ′, as defined in the proof of Lemma 5.1.

!

The previous lemma is combined with the following lemma for proving that in
fragments on the left-hand side of the at-border in Fig. 4 we cannot simulate
the at clause in for expressions.

Lemma 5.4 The fragment XQat does not have the property of Lemma 5.3.

Proof. If we consider an environment En, then En1 = En[v(“seq”) -→ 〈1, 2〉]
and En2 = En[v(“seq”) -→ 〈2, 1〉] are two bag-equivalent XQR

C environments,
but the evaluation of the expression

23

for $i at $pos in $seq
return if ($pos=1) then $i else ()

returns 〈1〉 when evaluated against environment En1 and 〈2〉 when evaluated
against En2.

!

5.2 Relationships between Input Size and Output Size

The maximum size of the output for all queries in certain XQuery fragments
can be identified as being bounded by a class of functions w.r.t. the input
size. For proving the inexpressibility results related to the output size, we first
introduce some auxiliary notations.

Let St = (V, E,<, ν,σ, δ) be a store, En = (a,b,v,x) an environment over
St and s a sequence over St. The set of atomic values in a sequence s is de-
fined as As = Set(s) ∩ A, the set of atomic values in a store St is ASt =
(rng(ν)∪ rng(σ))∩A, while the set of atomic values in the environment En
is AEn =

⋃
s∈rng(v) As.

The size ∆forest
St is the size of the forest in St, i.e., ∆forest

St = |V | and ∆tree
St is

the size of the largest tree of the forest in St, i.e., ∆tree
St = max(

⋃
n1∈V {c|c =

|{n2|(n1, n2) ∈ E∗}|}) 8 . The function size maps an atomic value to the num-
ber of cells needed to represent this item on the tape of a Turing Machine.
For example, if every character can be represented in one cell on the tape of
a Turing Machine, then size("abc") = 3 and size(78) = 2.

Definition 5.2 (Largest Sequence/Item Sizes) Consider the evaluation
pair ((St, En), (St′′, v)) of a query e, where St = (V, E,<, ν,σ, δ), En =
(a,b,v,x), and Γ(St′′, {v}) = St′ = (V ′, E ′, <′, ν ′, σ′, δ′). The largest input
sequence size is defined as ds

I = max({|s| |s ∈ rng(v)}∪ {∆tree
St }). The largest

input item size is di
I = max({size(a)|a ∈ (ASt∪AEn)}∪{;log(∆forest

St +1)<}).
The largest output sequence size is ds

O = max({|v|, ∆tree
St′ }). Finally, the largest

output item size is di
O = max({size(a)|a ∈ (ASt′∪Av)}∪{;log(∆forest

St′ +1)<}).

We now illustrate the previous definition with an example.

Example 5.2 Consider the following query:

for $x at $y in doc("doc.xml")//c return ($x, $y*100)

The evaluation of this query does not change the store and when evaluated
against the store in Example 2.1 and the empty environment En0 = (∅, ∅, ∅,⊥)

8 E∗ denotes the reflexive and transitive closure of E

24

we obtain the evaluation pair ((St, En0), (St, 〈ne
3, 100, ne

5, 200〉)).

• The largest input sequence size is ds
I = 9, which is the size of the largest

(and only) tree in the input store.
• The largest input item size is di

I = 2, since we need 2 characters to represent
the string "t1" and all other atomic values need at most 2 characters.

• The largest output sequence size is ds
O = 9, which is the size of the largest

(and only) tree in the output store.
• The largest output item size is di

O = 3, which is the size needed to represent
the number 100 and all other atomic values in the output need at most 3
characters.

In the definition of the largest sequence sizes we include the size of the
largest tree in the store, since one can generate such a sequence by using
the descendant-or-self axis. Note that in the definition of the largest item
sizes the first set of the union contains all sizes needed to represent the atomic
values that occur in the store (or environment) and the second set contains
only one value which indicates how much space we need to represent a pointer
to a node in the store. Furthermore, the inclusion of the nodes of the output
store in the output size is allowed for two reasons. The first reason is that all
upper bound functions that we use in our lemmas are at least linear functions
and the input nodes that occur in the output store just add a linear factor to
the upper bound function. The second reason is that the nodes of the output
store that do not occur in the input store have to be reachable by nodes in
the result sequence since garbage collection is applied.

The following inexpressibility results use the observation that the maximum
item and/or sequence output size can be bounded by a certain class of func-
tions in terms of the input size. If such a function is a polynomial p that has N
or N2 as its domain then there always exists an increasing polynomial p′ such
that p′ is an upper bound for p. Therefore we assume that all such functions
that are used as an upper bound in the following lemmas to be increasing
functions.

Lemma 5.5 For each evaluation St, En . e ⇒ (St′, v) where e ∈ L(XQctr,to)
it holds that di

O ≤ p(di
I) for some polynomial p.

Proof. We prove the lemma by induction on the size of the derivation tree
of the query q. In this tree the nodes correspond to the 〈Expr〉 non-terminal
of the XQctr,to syntax and as a consequence each node corresponds to a con-
struct of rules (S3-S17, S22, S25) in Fig. 1, so we prove the induction step
for each of these rules. Literals (S4,S5) return constant values, while steps
(S16), and variables (S3) return some items from the input (store and environ-
ment) of the expression and hence it is obvious that for all “leaf expressions”
di

O ≤ p(di
I) hold for some polynomial p (linear function). All other expressions

25

have subexpressions. We denote the largest input/output item sizes of the kth

subexpression by di
Ik

and di
Ok

. From the induction hypothesis it follows that
for each subexpression it holds that di

Ok
≤ pk(di

Ik
) for some polynomial pk.

Note that many expressions (S6, S7, S10-S15, S17, S18, S23, S26) do not al-
ter the environment or the store before passing them to their subexpressions,
so di

Ik
= di

I for all their subexpressions, and hence di
Ok

≤ pk(di
I). All items

in the result sequence of these expressions are either in the result of their
subexpressions, constant values or items polynomially bounded in size by the
items in the result of their subexpressions. Moreover, all items in the result
store of these expressions are items in the result store and/or sequence of their
subexpressions. Hence it holds that di

O ≤ p(di
I) for some polynomial p. The

expressions in XQctr,to that do change the environment are:

for expressions (S8) By induction we know, the largest item in $x needs
at most di

O1
≤ p1(di

I) space, for some polynomial p1. From the induction
hypothesis it follows that for each iteration of e2 it holds that di

O2
≤ p2(di

I2)
for some polynomial p2, and hence di

O2
≤ p2(p1(di

I)). Since the result of a
for expression contains only items that are in the result of an evaluation of
e2, we know that there exists a polynomial p such that di

O ≤ p(di
I)

let expressions (S9) From the induction hypothesis it follows that the out-
put item sizes for the first expression are bounded as di

O1
≤ p1(di

I) for some
polynomial p1. This upper bound also applies to di

O2
. Hence di

O = di
O2
≤

p2(p1(di
I)) ≤ p3(di

I) for some polynomial p3.
!

The previous lemma is combined with the following lemma to show that we
cannot express count in fragments at the left-hand side of the C-border in
Fig. 4.

Lemma 5.6 The fragment XQC does not have the property of Lemma 5.5.

Proof. If we consider the empty store St0, the environment En = ({}, {},
{(“$input”, 〈1, . . . , 1〉)},⊥), and the expression e = “count($input)” where
the length of the sequence bound to variable $input equals k, then the eval-
uation St0, En . e ⇒ (St′, v) has largest input item size di

I = 1 and output
item size di

O = ;log(k + 1)<.
!

The following lemma gives upperbounds for the largest output sequence and
item sizes for evaluations in XQctr

at,S.

Lemma 5.7 For each evaluation St, En . e ⇒ (St′, v) where e ∈ L(XQctr
at,S)

it holds that ds
O ≤ p1(ds

I) and di
O ≤ p2(log(ds

I), d
i
I) for some polynomials p1

and p2.

Proof. This lemma can be proven by induction on the size of the deriva-

26

tion tree of the query q. In this derivation tree the nodes correspond to the
〈Expr〉 non-terminal of the XQctr

at,S syntax and as a consequence each node
corresponds to a construct of rules (S3-S17, S20, S21, S25) in Fig. 1. First,
consider the leafs of the derivation tree. Literals (S4,S5) return constant val-
ues, while steps (S16), and variables (S3) return some items from the input
(store and environment) of the expression and hence it is obvious that for all
leaf expressions ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) hold for some polyno-

mials (linear functions) p1 and p2. All other expressions have subexpressions.
Similar to the proof of Lemma 5.5, we denote the input/output sizes of the
kth subexpression by ds

Ik
, di

Ik
, ds

Ok
, and di

Ok
. From the induction hypothesis it

follows that ds
Ok
≤ pk1(d

s
Ik

) and di
Ok
≤ pk2(log(ds

Ik
), di

Ik
) for each subexpres-

sion. Note that many expressions (S6, S7, S10-S15, S17, S20, S25) do not alter
the environment or the store before passing them to their subexpressions, so
ds

Ik
= ds

I and di
Ik

= di
I for all subexpressions.

Basic built-in functions (S6), if and binary expressions (S7,S10-S15)
and typeswitches (S17) All these expressions return results that are di-
rectly bound by the sum of output sizes of these subexpressions. Hence
their output size is bound by ds

O ≤ p1(ds
I) and di

O ≤ p2(log(ds
I), d

i
I) for some

polynomials p1 and p2.
sum aggregation (S20) This function returns a single number that is the

sum of a number of values of the input sequence (output of the subexpres-
sion). This result is bounded by ds

O1
· di

O1
≤ pk1(d

s
I) · 2pk2

(log(ds
I),di

I) and hence
O(log(pk1(d

s
I))+pk2(log(ds

I), d
i
I)) place is needed to represent this result (one

item), which is bounded by p(log(ds
I), d

i
I) for some polynomial p.

Constructors (S25) These can worst-case copy the entire input store, such
that the output sequence size ds

O ≤ O(2·ds
I), and di

O ≤ O(log(ds
I), d

i
I), which

is still within the bounds that we have to show.
let expression (S9) From the induction hypothesis it follows that the out-

put sizes for the first subexpression are bounded as follows: ds
O1
≤ p1(ds

I)
and di

O1
≤ p2(log(ds

I), d
i
I) for some increasing polynomials p1 and p2. These

upper bounds also apply to ds
I2 and di

I2 . From the induction hypothesis it
follows that ds

O2
≤ p3(ds

I2) and di
O2
≤ p4(log(ds

I2), d
i
I2) for some polynomi-

als p3 and p4. Hence ds
O = ds

O2
≤ p3(p1(ds

I)) ≤ p5(ds
I) and di

O = di
O2

≤
p4(p1(log(ds

I)), p2(log(ds
I), d

i
I)) ≤ p6(log(ds

I), d
i
I) for some increasing polyno-

mials p5 and p6.
for expressions (S8) The loop variable ($x) and the position variable ($y)

are each iteration bound to one item. By induction we know that there
are polynomials p1 and p2 such that the largest item of $y needs at most
log(ds

O1
) ≤ log(p1(ds

I)) space and the largest item of $x needs at most
di

O1
≤ p2(log(ds

I), d
i
I) space. Hence, for each iteration of e2 it holds that

ds
I2 ≤ log(p1(ds

I)) and di
I2 ≤ p2(log(ds

I), d
i
I). By induction we know for

each iteration of e2 that ds
O2

≤ p3(ds
I2) and di

O2
≤ p4(log(ds

I2), d
i
I2) for

some polynomials p3 and p4. Since the number of iterations is bounded
by the result sequence of e1, we know that at most ds

O1
≤ log(p1(ds

I))

27

iterations can occur. The result sequences of all iterations are concate-
nated in order to compute the end result and hence the output sizes are
bounded as follows: ds

O ≤ log(p1(ds
I)) · p3(log(p1(ds

I))) ≤ p5(ds
I) and di

O ≤
p4(log(log(p1(ds

I))), p2(log(ds
I), d

i
I)) ≤ p6(log(ds

I), d
i
I) for some polynomials

p5 and p6.
Path expressions (S16) These also obviously have output sizes within these

polynomial bounds, since they are in fact a special kind of for expressions
with an extra selection at the end, i.e., a node test and removal of duplicate
nodes.

Since the number of subexpressions of an expression does not depend on the
input store or environment, the previous results suffice to show that ds

O ≤
p1(ds

I) and di
O ≤ p2(log(ds

I), d
i
I) where p1 and p2 are some polynomials that

only depend on the expression itself and the functions in the environment and
not on the values in the store or the environment.

!

The previous lemma is combined with the following lemma to show that we
cannot express to in fragments at the left-hand side of the to-border in Fig. 4.

Lemma 5.8 The fragment XQto does not have the property of Lemma 5.7.

Proof. If we consider the empty store St0, the environment En = ({},
{}, {(“$input”, 〈k〉)},⊥), and the expression e = “1 to $input”, then the
evaluation St0, En . e ⇒ (St′, v) has maximal input sequence size ds

I =
O(log(k)) and maximal output sequence size ds

O = Ω(k log(k)).
!

Finally, we also give upperbounds for the largest output sequence and item
sizes for evaluations in XQctr,to

at .

Lemma 5.9 For each evaluation St, En . e ⇒ (St′, v) where e ∈ L(XQctr,to
at)

it holds that ds
O ≤ p1(ds

I , 2
di

I) and di
O ≤ p2(log(ds

I), d
i
I) for some polynomials

p1 and p2.

Proof. Similar to the proof of Lemma 5.7 we prove this lemma by induction
on the derivation tree. However, in this proof we will omit some details that
were discussed earlier. In the proof of Lemma 5.7 we were allowed to use
induction since a polynomial applied to a polynomial resulted again into a
polynomial. We are also now allowed to use induction for the following reason.

Suppose that ds
O ≤ p1(ds

I1 , 2
di

I1), di
O ≤ p2(log(ds

I1), d
i
I1), ds

I1 ≤ p3(ds
I , 2

di
I) and

di
I1 ≤ p4(log(ds

I), d
i
I). Then it follows that

• ds
O ≤ p1(p3(ds

I , 2
di

I), 2p4(log(ds
I),di

I)) ≤ p1(p3(ds
I , 2

di
I), p5(2log(ds

I), 2di
I)) for some

polynomial p5 and hence ds
O ≤ p6(ds

I , 2
di

I) for some polynomial p6

• di
O ≤ p2(log(p3(ds

I , 2
di

I)), p4(log(ds
I), d

i
I)) ≤ p2(p7(log(ds

I), log(2di
I)),

28

p4(log(ds
I), d

i
I)) for some polynomial p7 and hence di

O ≤ p8(log(ds
I), d

i
I) for

some polynomial p8.

Hence we can use induction in order to prove this lemma. We know that for all
XQctr

at expressions there was a polynomial relation between the largest input
sequence/item sizes and the largest output sequence/item sizes. Furthermore,
the to expression can construct a sequence of size, at worst, O(2di

I) with values
that need at most O(di

I) space. As a consequence it can easily be seen that
all XQctr,to

at expressions have output sizes within the bounds specified by this
lemma when evaluated against an XQctr,to

at environment.
!

The previous lemma is combined with the following lemma to show that we
cannot simulate all recursive functions in fragments at the left-hand side of
the R-border in Fig. 4.

Lemma 5.10 The fragment XQR does not have the property of Lemma 5.9.

Proof. Clearly there are expressions in XQR that do not have this property.
Indeed, if we consider the empty store St0, the environment En = ({}, {},
{(“$input”, k)},⊥), and the expression e =

declare function mpowern($m, $n) {
if ($n = 1) then $m else ($m * mpowern($m, $n - 1))

};
declare function genseq($n) {
if ($n < 1) then () else (genseq($n - 1), 1)

};
let $n := $input
return genseq(mpowern($n, $n))

then the evaluation St0, En . e ⇒ (St′, v) has largest input item size di
I =

;log(k + 1)<, largest input sequence size ds
I = 1 and largest output sequence

size Ω(kk).
!

5.3 Upper Bounds for the Number of Different Possible Results

Finally, we show that the number of possible output values is polynomially
bounded by the largest input sequence size and the size of the set of possible
atomic values in the input store and environment.

Definition 5.3 (Possible Results) Consider an expression e, a (finite) al-
phabet Σ ⊂ A and a number k. The set Res of possible results for evaluations

29

of e constrained by Σ and k is defined as the set of all pairs (St′, v) for which
it holds that there exists a store St and environment En (in the same fragment
as e) such that St, En . e ⇒ (St′, v) and ds

I ≤ k and ASt ∪ AEn ⊆ Σ.

In other words, given an expression e, an alphabet Σ and a number k, the
set Res contains all possible outputs of the evaluations of e restricted to Σ
and k. We will show that, for expressions the fragment XQctr

at , the number of
different atomic values in this set is polynomially bounded by k and the size
of Σ. We first illustrate this claim with an example.

Suppose e is following expression:

for $x at $y in $z return ($y, $x + 1)

If we assume some Σ and k then we can verify that the number of different
atomic values in the output of this expression is bounded by 2 · |Σ| + k. For
example, if Σ = {5, 8} and k = 2 then only values in {1, 2, 5, 6, 8, 9} can occur
in a result, but note that not all these values have to occur in the result of
every evaluation constrained by this Σ and k. For example, if the input store
is empty and v(z) = 〈5〉 is the only variable binding in the environment then
only the atomic values 1 and 6 occur in the result.

Lemma 5.11 Consider a (finite) alphabet Σ ⊂ A and a number k. If n = |Σ|
then for each XQctr

at expression e it holds that if Res is the set of possible
results for evaluations of e constrained by Σ and k, then the number of different
atomic values in all possible results is defined as

∣∣∣
⋃

(St′,v)∈Res(A
St′ ∪ Av)

∣∣∣ and

bounded by p(n, k) for some polynomial p.

Proof. This lemma can be proven by induction on the derivation tree where
each expression corresponds to the 〈Expr〉 non-terminal of the XQat syntax
and as a consequence each node corresponds to a construct of rules (S3-
S18,S22) of Fig. 1.

First, consider the leafs of the derivation tree. Literals (S4,S5) return for all
evaluations the same atomic value, steps (S16) do not return atomic values and
variables (S3) only return atomic values originated from the input. All these
expressions do not change the input store. Hence it holds that the number of
atomic values in the possible results is bounded by n + 1.

All other expressions have subexpressions. Note that many expressions (S6,
S7, S10-S15, S18, S26) do not alter the environment or the store before passing
them to their subexpressions. All these expressions return either only atomic
values from their subexpressions or one new atomic value that is a boolean.
From the induction hypothesis and the fact that all these expressions have a
constant number of subexpressions, which are all evaluated only once during
one evaluation of the superexpression, it follows that the number of atomic

30

values in the possible results is bounded by p(n, k) for some polynomial p.

We now discuss the remaining expressions.

let expressions (S9) The second subexpression is evaluated against an al-
phabet of size N ′ < p1(n, k) and a store and environment with a maximal
sequence size of k′ < p2(k) (Lemma 5.7) for some polynomials p1, p2. From
the induction hypothesis then it follows that the number of atomic values in
the possible results is bounded by p′(n′, k′) < p′(p1(n, k), p2(k)) < p(N, k)
for some polynomials p and p′.

for expressions (S8) From Lemma 5.7 we know that the number of differ-
ent atomic values in the possible results is bounded by p1(n, k) for some
polynomial p1 and the number of items in the result sequence of the subex-
pression is bounded by p2(k) for some polynomial p2. The expression in the
return clause is evaluated at most p2(k) times against the result store of the
first subexpression and environment where two extra variables are set. This
in fact means that the subexpression is evaluated against an alphabet of size
n′ < p1(n, k) and a store and environment with a maximal sequence size of
k′ < p2(k). Hence, from the induction hypothesis it follows that the number
of atomic values in the possible results for each evaluation is bounded by
p′(n′, k′) < p′(p1(n, k), p2(k)) < p′′(n, k) for some polynomial p′′. Since the
result of the for expression is just the concatenation of all results of the
return clause, the total number of atomic values in the possible results is
bounded by p2(k).p′′(n, k) < p(n, k) for some polynomial p.

Path expressions (S17) Path expressions can be considered as a special
kind of for expressions with an extra selection at the end, i.e., sorting
nodes in document order and removing duplicate nodes. Hence, obviously
the lemma also holds for them.

!

The previous and the following lemma are combined in Section 6 to show that
we cannot compute the sum of a list of numbers in fragments on the left-hand
side of the S-border in Fig. 4.

Lemma 5.12 The fragment XQat,S does not have the property of Lemma 5.11.

Proof. Consider the alphabet Σ = {1, 2, 4, . . . , 2n−1} and k = n. Since “$x”
can contain any combination of elements of Σ, the result of the sum can be
any number between 1 and 2n−1. However, there exists no polynomial p such
that for each n it holds that 2n − 1 ≤ p(n, n). Hence we know that we cannot
express the sum in XQat.

!

31

6 Proof of the Main Theorem

The results of Section 4 and Section 5 can be combined to complete the proof
of Theorem 3.1.

First, we prove that the dotted borders in Fig. 4 are correct by showing that
something can be expressed in the least expressive fragments of the right-hand
side that cannot be expressed in any of the most expressive fragments of the
left-hand side.

to-border The most expressive fragment on the left-hand side is XQctr
at,S. The

least expressive fragment on the right-hand side is XQto. From Lemma 5.7
and Lemma 5.8 it follows that to cannot be expressed in XQctr

S .
R-border The most expressive fragment on the left-hand side is XQctr,to

at . The
least expressive fragment on the right-hand side is XQR. From Lemma 5.9
and Lemma 5.10 it follows that recursive function definitions cannot be
simulated in XQctr,to

at .
C-border The most expressive fragments on the left-hand side are XQR and

XQctr,to. The least expressive fragment on the right-hand side is XQC . From
Lemma 5.1 and Lemma 5.2 it follows that count() cannot be expressed in
XQR and from Lemma 5.5 and Lemma 5.6 it follows that count() cannot
be expressed in XQctr,to.

at-border The most expressive fragments on the left-hand side are XQR
C and

XQctr,to. The least expressive fragment on the right-hand side is XQat. From
Lemma 5.4 it follows that at cannot be expressed in XQR

C . From Lemma 5.5
and Lemma 5.6 it follows that count() cannot be expressed in XQctr,to and
hence also at cannot be expressed in XQctr,to, since otherwise we would
get a contradiction by simulating count() as known from Lemma 5.1 and
Lemma 4.1.

S-border The most expressive fragments on the left-hand side are XQR,
XQctr,to and XQctr

C . The least expressive fragment on the right-hand side is
XQS. From Lemma 5.5, Lemma 5.6, Lemma 5.1 and Lemma 5.2 it follows
that count() cannot be expressed in XQctr,to and in XQR. Hence sum()
cannot be simulated in XQR nor XQctr,to. Finally, from Lemma 5.11 and
Lemma 5.12 follows that sum() cannot be expressed in XQctr

C .

All previous results can now be combined to complete the proof:

• If XF1 and XF2 are in the same node then it follows that they are equivalent:
This can easily be shown by the lemmas from Section 4.

• If XF1 and XF2 are equivalent then they occur in the same node:
Suppose that XF1 and XF2 are not in the same node. There are two pos-
sibilities: if one of the two fragments contains a node constructor (suppose
XF1) and the other (XF2) does not then you obviously cannot simulate the

32

node construction in XF2. Else it follows from the figure that they are sepa-
rated by a dotted border and hence we know that there is something in one
fragment that you cannot express in the other fragment, so XF1 *≡ XF2.

• If there is a directed path from the node containing XF1 to the node con-
taining XF2 then we know that XF1 4 XF2 and since XF1 and XF2 appear
in a different node they are not equivalent, so XF1 : XF2:
This follows from the fact that there is a fragment XF ′

1 equivalent to XF1

and XF ′
2 equivalent to XF2 such that L(XF ′

2) ⊆ L(XF ′
1).

• If XF1 : XF2 then there is a directed path from the node containing XF1

to the node containing XF2:
Suppose that XF1 : XF2 and there is no directed path from XF1 to XF2.
Then either there is a directed path from XF2 to XF1 such that XF2 : XF1

and hence XF1 *: XF2 or there is no directed path at all between the nodes
of both fragments. In this case we know by inspecting Fig. 4 that there
are (at least) two borders separating the nodes of both fragments where for
the first border XF1 is in the more expressive set of fragments and for the
second border XF2 is in the more expressive set of fragments. Hence XF1

and XF2 are incomparable so XF1 *: XF2.

7 Conclusion

We investigated the expressive power of XQuery fragments in order to outline
which features really add expressive power and which ones simplify queries
already expressible. The main results of this article outline that, using six
attributes (the count() function, the sum() function, to expressions, the at
clause, node construction and recursion), we can define 64 XQuery fragments,
which can be divided into 17 equivalence classes, i.e., classes including frag-
ments with the same expressive power. We proved the 17 equivalence classes
are really different and possess a different degree of expressive power.

This has led to several interesting observations:

• The ability to construct nodes sometimes adds expressive power, even if no
new nodes are returned in the result. For example, it is shown that the quite
powerful fragment XQR,to

C,S , i.e., the basic fragment extended with recursive
functions, to expressions, the count() function and the sum() function,
still cannot distinguish the sequences 〈1, 2〉 and 〈2, 1〉 (see Lemma 5.3 and
the proof that this fragment is equivalent to XQR

C , i.e., the basic fragment
extended with recursive functions and the count() function) but it is easy
to see that already in XQctr, the basic fragment extended with only node
construction, these sequences can be distinguished.

• The order by clause can already be simulated in XQat, the basic fragment
extended with at clauses in for expressions, as is shown in Section 2.3.

33

• Filter expressions, i.e. expressions of the form e1[e2], can be already simu-
lated in the basic fragment XQ, as shown in Section 2.3.

• The functions position() and last() that allow the selection of nodes
in certain positions can already be simulated in XQat, the basic fragment
extended with only at clauses, which is also discussed in Section 2.3.

• On the other hand at clauses in for expressions can be simulated in XQctr
C ,

the basic fragment extended with node construction and counting, which is
shown in Lemma 4.6, and demonstrates the combined expressive power of
these two features.

• The smallest fragment that has the expressive power of the full language is
XQctr,R, the basic fragment extended with node construction and recursion
(cf. Figure 4). This means that all the other fragment-defining attributes,
which are to expressions, at clauses, the count() and sum() functions, can
be simulated in this fragment.

Finally we briefly discuss some related work by Koch [8] and Benedikt and
Koch [2]. In this work also XQuery fragments are defined and studied in terms
of computational complexity and compared in expressive power with certain
types of first-order logic. Unfortunately the fragments defined in that work
have no direct relationship with our fragments. However, we can make some
observations on the relationships between their fragments AtomXQ and XQ
which seem similar to our fragments XQctr and XQctr

at , respectively.

Their fragment AtomXQ is an XQuery fragment in which one can express
path expressions, create new trees, compare nodes/values, test sequences for
emptiness and use simple for expressions and if expressions. In terms of
expressive power AtomXQ is a subset of our fragment XQctr. The converse
clearly does not hold since XQctr can do basic arithmetic on values in the
XML trees. Even if the arithmetic operations from XQctr are removed the
relationship is not clear because XQctr allows general let expressions for
which it is not clear if the can be removed without losing expressive power.

Their fragment XQ is basically AtomXQ extended with a deep-equality com-
parison for trees. In terms of expressive power their fragment XQ (which is
different from our XQ) is a subset of our fragment XQctr

at . The most involved
part of the proof is showing that deep equivalence of nodes can be expressed,
for which the at clause seems to be required. Conversely, it is easily observed
that XQctr

at can express some functions that cannot be expressed by their XQ
because with the at clause we can write functions that return integers not in
the XML tree. This raises the question whether in terms of expressive power
their XQ is a subset of our XQctr, which seems unlikely, but no proof of a
counterexample has been found yet.

34

Acknowledgements: The authors wish to thank the anonymous referees,
whose constructive remarks have helped greatly to improve this paper.

References

[1] Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper. Structural properties
of XPath fragments. In Diego Calvanese, Maurizio Lenzerini, and Rajeev
Motwani, editors, Database Theory - ICDT 2003, 9th International Conference,
Siena, Italy, January 8-10, 2003, Proceedings, volume 2572 of Lecture Notes in
Computer Science, pages 79–95. Springer, 2003.

[2] Michael Benedikt and Christoph Koch. Interpreting tree-to-tree queries. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming, 33rd International Colloquium,
ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume 4052
of Lecture Notes in Computer Science, pages 552–564. Springer, 2006.

[3] Scott Boag, Don Chamberlin, Mary Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML query language. W3C
Recommendation, 2007. Available at http://www.w3.org/TR/xquery/.

[4] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 formal semantics. W3C Recommendation, 2007. Available at http://www.
w3.org/TR/xquery-semantics/.

[5] Georg Gottlob, Christoph Koch, and Reinhard Pichler. The complexity of
XPath query evaluation. In Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12,
2003, San Diego, CA, USA, pages 179–190. ACM, 2003.

[6] Jan Hidders, Jan Paredaens, Roel Vercammen, and Serge Demeyer. A
light but formal introduction to XQuery. In Zohra Bellahsene, Tova Milo,
Michael Rys, Dan Suciu, and Rainer Unland, editors, Database and XML
Technologies, Second International XML Database Symposium, XSym 2004,
Toronto, Canada, August 29-30, 2004, Proceedings, volume 3186 of Lecture
Notes in Computer Science, pages 5–20. Springer, 2004.

[7] Stephan Kepser. A simple proof of the Turing-completeness of XSLT
and XQuery. In Proceedings of the Extreme Markup Languages 2004
Conference, 2-6 August 2004, Montréal, Quebec, Canada. IDEAlliance, 2004.
Available at http://www.mulberrytech.com/Extreme/Proceedings/html/
2004/Kepser01/EML2004Kepser01.html.

[8] Christoph Koch. On the complexity of nonrecursive XQuery and functional
query languages on complex values. ACM Trans. Database Syst., 31(4):1215–
1256, 2006.

35

[9] Wim Le Page, Jan Hidders, Philippe Michiels, Jan Paredaens, and Roel
Vercammen. On the expressive power of node construction in XQuery. In AnHai
Doan, Frank Neven, Robert McCann, and Geert Jan Bex, editors, Proceedings
of the Eight International Workshop on the Web & Databases (WebDB 2005),
Baltimore, Maryland, USA, Collocated with ACM SIGMOD/PODS 2005, June
16-17, 2005, pages 85–90, 2005.

[10] Chen Li, editor. Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 13-15, 2005,
Baltimore, Maryland, USA. ACM, 2005.

[11] Leonid Libkin. Expressive power of SQL. Theoretical Computer Science,
3(296):379–404, 2003.

[12] Maarten Marx. Conditional XPath, the first order complete XPath dialect. In
Li [10], pages 13–22.

[13] Jan Paredaens. On the expressive power of the relational algebra. Information
Processing Letters, 7(2):107–111, 1978.

[14] Stijn Vansummeren. Deciding well-definedness of XQuery fragments. In Li [10],
pages 37–48.

36

