Research Methods in Computer Science

(Serge Demeyer — University of Antwerp)

AnSyMo
Antwerp Systems and software Modelling
http://ansymo.ua.ac.be/

Universiteit Antwerpen
1. Research Methods

Helicopter View

(Ph.D.) Research

How to perform research? (and get “empirical” results)

How to write research? (and get papers accepted)

How many of you have done / will do a case-study?
1. Research Methods

Introduction
• Origins of Computer Science
• Research Philosophy

Research Methods
• 1. Feasibility study
• 2. Pilot Case
• 3. Comparative study
• 4. Observational Study [a.k.a. Etnography]
• 5. Literature survey
• 6. Formal Model
• 7. Simulation

Conclusion
• Studying a Case
 vs. Performing a Case Study
 + Proposition
 + Unit of Analysis
 + Threats to Validity
What is (Ph.d.) Research?

http://gizmodo.com/5613794/what-is-exactly-a-doctorate

Human Knowledge
Elementary School
High School
Bachelor
Master
Ph.D. (early stages)
Ph.D. (finished)
All science is either physics or stamp collecting (E. Rutherford)

We study artifacts produced by *humans*

Computer science is no more about computers than astronomy is about telescopes. (E. Dijkstra)

Computer science
Computer engineering

Informatics
Software Engineering
Science vs. Engineering

Science
- Physics
- Chemistry
- Biology
- Mathematics
- Geography

Engineering
- Civil Engineering
- Electronics
- Chemistry and Materials
- Electro-Mechanical Engineering

???

Computer Science

Software Engineering

???
Mathematical Origins

Turing Machines
• Halting problem

Algorithmic Complexity
• \(P = ? \) NP

Compilers
• Chomsky hierarchy

Databases
• Relational model

(Inductive) Reasoning
• Logical argumentation
 + Formal models, theorem proving, ...
 + Axioms & lemma’s
 + Foo, bar type of examples
• “Deep” and generic universal knowledge

Gödel theorem: consistency of the system is not provable in the system.

⇒ A complete and consistent set of axioms for all of mathematics is impossible
Engineering Origins

Computer Engineering
• Moore’s law: “the number of transistors on a chip will double about every two years”
 + Self-fulfilling prophesy
• Hardware technology
 + RISC vs. CISC
 + MPSoC
• Compiler optimization
 + peephole optimization
 + branch prediction

Empirical Approach
• Tom De Marco: “you cannot control what you cannot measure”
 + quantify
 + mathematical model
• Pareto principle
 + 80 % - 20 % rule
 (80% of the effects come from 20% of the causes)

As good as your next observation.
Premise: The sun has risen in the east every morning up until now.
Conclusion: The sun will also rise in the east tomorrow. ... Or Not ?
Influence of Society

Lives are at stake (e.g., automatic pilot, nuclear power plants)

Huge amounts of money are at stake (e.g., Ariane V crash, Denver Airport Baggage)

Software became Ubiquitous
... its not a hobby anymore

Corporate success or failure is at stake (e.g., telephone billing, VTM launching 2nd channel)
Interdisciplinary Nature

“Hard” Sciences

Science

Engineering

“Soft” Sciences

Economics

Psychology

Sociology

Computer Science

Action Research
1. Research Methods

Objective ↔ Subjective

- Plato’s cave

- Scientific Paradigm (Kuhn)
 + Dominant paradigm / Competing paradigms / Paradigm shift
 ⇒ Normal science vs. Revolutionary science
Dominant view on Research Methods

Physics
(“The” Scientific method)
• form hypothesis about a phenomenon
• design experiment
• collect data
• compare data to hypothesis
• accept or reject hypothesis
 + ... publish (in Nature)
• get someone else to repeat experiment (replication)

Medicine
(Double-blind treatment)
• form hypothesis about a treatment
• select experimental and control groups that are comparable except for the treatment
• collect data
• commit statistics on the data
• treatment ⇒ difference (statistically significant)

Cannot answer the “big” questions ... in timely fashion
• smoking is unhealthy
• climate change
• darwin theory vs. intelligent design
• ...
• agile methods
Experiment principles

"Boring to read" syndrome
• Too much focus on proper research procedure

THEORY

Experiment objective

cause-effect construct

Effect construct

OBSERVATION

Treatment

Outcome

Independent variable

Dependent variable

Experiment operation
Research Methods in Computer Science

Different Sources

- Gordona Dodif-Crnkovic, “Scientific Methods in Computer Science”

1. Feasibility study
 • is it possible?

2. Pilot Case, Demonstrator
 • is it appropriate?

3. Comparative study
 • is it better?

4. Observational Study
 • What is “it”?

5. Literature survey
 • what is known/unknown?

6. Formal Model
 • underlying concepts?

7. Simulation
 • what if?

Case studies are widely used in computer science
⇒ “studying a case” vs. “doing a case study”

Source: Personal experience
(Guidelines for Master Thesis Research – University of Antwerp)
The sixteenth of September
Rene Margritte
Feasibility Study

Here is a new idea, is it possible?

➡ Metaphor: Christopher Columbus and western route to India

• Is it possible to solve a specific kind of problem ... effectively?
 + computer science perspective (P = NP, Turing test, ...)
 + engineering perspective (build efficiently; fast — small)
 + economic perspective (cost effective; profitable)

• Is the technique new / novel / innovative?
 + compare against alternatives
 ➡ See literature survey; comparative study

• Proof by construction
 + build a prototype
 + often by applying on a “CASE”

• Conclusions
 + primarily qualitative; "lessons learned"
 + quantitative
 - economic perspective: cost - benefit
 - engineering perspective: speed - memory footprint
The Prophet
Pablo Gargallo
Pilot Case (a.k.a. Demonstrator)

Here is an idea that has proven valuable; does it work for us?

➥ Metaphor: Portugal (Amerigo Vespucci) explores western route

• proven valuable
 + accepted merits (e.g. “lessons learned” from feasibility study)
 + there is some (implicit) theory explaining why the idea has merit
• does it work for us
 + context is very important

• Demonstrated on a simple yet representative “CASE”
 + “Pilot case” ≠ “Pilot Study”

• Proof by construction
 + build a prototype
 + apply on a “case”

• Conclusions
 + primarily qualitative; "lessons learned"
 + quantitative; preferably with predefined criteria
 ➔ compare to context before applying the idea!!
Walking man
Standing Figure
– Alberto Giacometti
Comparative Study

Here are two techniques, which one is better?

- for a given purpose!
 - (Not necessarily absolute ranking)
- Where are the differences? What are the tradeoffs?

- Criteria check-list
 - predefined
 - should not favor one technique
 - qualitative and quantitative
 - qualitative: how to remain unbiased?
 - quantitative: represent what you want to know?

- Criteria check-list should be complete and reusable!
 ➡ If done well, most important contribution (replication!)
 ➡ See literature survey

- Score criteria check-list
 + Often by applying the technique on a “CASE”

- Compare
 + typically in the form of a table
Observational Study [Ethnography]

Understand phenomena through observations

- Metaphor: Diane Fossey “Gorillas in the Mist”

- systematic collection of data derived from direct observation of the everyday life
 + phenomena is best understood in the fullest possible context
 - observation & participation
 - interviews & questionnaires

- Observing a series of cases “CASE”
 + observation vs. participation?

- example: Action Research
 + Action research is carried out by people who usually recognize a problem or limitation in their workplace situation and, together, devise a plan to counteract the problem, implement the plan, observe what happens, reflect on these outcomes, revise the plan, implement it, reflect, revise and so on.

- Conclusions
 + primarily qualitative: classifications/observations/...
Torben Giehler
Matterhorn

Paul Klee
Niesen
Literature Survey

What is known? What questions are still open?

Systematic
- “comprehensive”
 - precise research question is prerequisite
 + defined search strategy (rigor, completeness, replication)
 + clearly defined scope
 - criteria for inclusion and exclusion
 + specify information to be obtained
 - the “CASES” are the selected papers

- outcome is organized

<table>
<thead>
<tr>
<th>classification</th>
<th>taxonomy</th>
<th>conceptual model</th>
</tr>
</thead>
<tbody>
<tr>
<td>table</td>
<td>tree</td>
<td>frequency</td>
</tr>
</tbody>
</table>
While the definition of dynamic analysis is rather abstract, the inherent difficulty of determining which elements of interest are left open. To allow the definition to serve in the context of object-oriented software, i.e., miscellaneous purposes, the perceived goals of dynamic analysis, or simply the fact that many program activities, i.e., miscellaneous purposes, could not be generalized to any of the main subfields. Therefore, the inherent preciseness of dynamic analysis, as the behavior or traces under analysis, necessitates the definition of an already recorded execution involving a program attribute.

Reasons might include ease of instrumentation, the suitability of certain behavioral visualizations, and particularly in the context of dynamic analysis, the amount of information are typically conveyed to humans.

1. Research Methods
Formal Model

How can we understand/explain the world?
- make a mathematical abstraction of a certain problem
 + analytical model, stochastic model, logical model, re-write system, ...
 + often explained using a “CASE”
- prove some important characteristics
 + based on inductive reasoning, axioms & lemma’s, ...

Motivate
- which factors are irrelevant (excluded) and which are not (included)?
- which properties are worthwhile (proven)?
 ➔ See literature survey
Hodler
Eiger, Mönch and Jungfrau in the Morning Sun

Seurat
Eiffel Tower
1. Research Methods

Simulation

What would happen if ... ?

- study circumstances of phenomena in detail
 + simulated because real world too expensive; too slow or impossible
- make prognoses about what can happen in certain situations
 + test using real observations, typically obtained via a “CASE”

Motivate

- which circumstances are irrelevant (excluded) and which are not (included)?
- which properties are worthwhile (to be observed/predicted)?
 ➔ See literature survey

Examples

- distributed systems (grid); network protocols
 + too expensive or too slow to test in real life
- embedded systems — simulating hardware platforms
 + impossible to observe real clock-speed / memory footprint / ...
 ➔ Heisenberg uncertainty principle
1. Feasibility study
Proof by construction; often by applying on a “CASE”

2. Pilot Case, Demonstrator
Demonstrated on a simple yet representative “CASE”

3. Comparative study
Score criteria check-list; often by applying on a “CASE”

4. Observational Study
Observing a series of “CASES”

5. Literature survey
“CASES” = selected papers

6. Formal Model
Often explained using a “CASE”

7. Simulation: test
Prognoses with real observations obtained via a “CASE”

Case studies - Revisited

Case studies are widely used in computer science
⇒ “studying a case” vs. “doing a case study”
Case Study Research

Introduction

• Origins of Computer Science
• Research Philosophy

Research Methods

• 1. Feasibility study
• 2. Pilot Case
• 3. Comparative study
• 4. Observational Study [a.k.a. Etnography]
• 5. Literature survey
• 6. Formal Model
• 7. Simulation

Conclusion

• Studying a Case vs. Performing a Case Study
 + Proposition
 + Unit of Analysis
 + Threats to Validity

Sources

1. Research Methods

Spectrum of cases

- **Toy-example**
 - Accepted teaching vehicle
 - "textbook example"
 - Simple but illustrates relevant issues

- **Exemplar**
 - Real-life example
 - Industrial system, open-source system
 - Context is difficult to grasp

- **Case**
 - Competition (tool oriented)
 - Approved by community
 - Comparing

- **Community case**
 - Benchmark
 - Approved by community
 - Known context
 - "planted" issues

Mining Software Repositories Challenge. [Yearly workshop where research tools compete against one another on a common predefined case.]
Case study — definition

A case study is an empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between the phenomenon and context are not clearly evident

[Robert K. Yin. Case Study Research: Design and Methods; p. 13]

- empirical inquiry: yes, it is empirical research
- contemporary: (close to) real-time observations
 + incl. interviews
- boundaries between the phenomenon and context not clear
 + as opposed to “experiment”
Case Study — Counter evidence

- many more variables than data points
- multiple sources of evidence; triangulation
- theoretical propositions guide data collection
 (try to confirm or refute propositions with well-selected cases)

Case studies also look for counter evidence
Misunderstanding 2: Generalization

One cannot generalize on the basis of an individual case; therefore the case study cannot contribute to scientific development.

[Bent Flyvbjerg, "Five Misunderstandings About Case Study Research."]

- Understanding
 + The power of examples
 + Formal generalization is overvalued
 - dominant research views of physics and medicine

- Counterexamples
 + one black swan falsifies “all swans are white”
 - case studies generate deep understanding; what appears to be white often turns out to be black

- sampling logic vs. replication logic
 + sampling logic: operational enumeration of entire universe
 - use statistics: generalize from “randomly selected” observations
 + replication logic: careful selection of boundary values
 - use logic reasoning: presence of absence of property has effect
Sampling Logic vs. Replication Logic

Random selection
⇒ generalize for entire population

Selection of (boundary) value
⇒ understand differences
- propositions
- units of analysis
Research questions for Case Studies

Existence: *Exploratory*
- Does X exist?

Description & Classification
- What is X like?
- What are its properties?
- How can it be categorized?
- How can we measure it?
- What are its components?

Descriptive-Comparative
- How does X differ from Y?

Frequency and Distribution
- How often does X occur?
- What is an average amount of X?

Descriptive-Process
- How does X normally work?
- By what process does X happen?
- What are the steps as X evolves?

Relationship: *Explanatory*
- Are X and Y related?
- Do occurrences of X correlate with occurrences of Y?

Causality
- What causes X?
- What effect does X have on Y?
- Does X cause Y?
- Does X prevent Y?

Causality-Comparative
- Does X cause more Y than does Z?
- Is X better at preventing Y than is Z?
- Does X cause more Y than does Z under one condition but not others?

Design
- What is an effective way to achieve X?
- How can we improve X?

Proposition (a.k.a. Purpose)

Where to expect boundaries?
⇒ Thorough preparation is necessary!
⇒ You need an explicit theory.

<table>
<thead>
<tr>
<th>Exploratory</th>
<th>Confirmatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory case studies are used as initial investigations of some phenomena to derive new hypotheses and build theories. (*)</td>
<td>Confirmatory case studies are used to test existing theories. The latter are especially important for refuting theories: a detailed case study of a real situation in which a theory fails may be more convincing than failed experiments in the lab. (*)</td>
</tr>
</tbody>
</table>

Units of Analysis

What phenomena to analyze
- depends on research questions
- affects data collection & interpretation
- affects generalizability

Possibilities
- individual developer
- a team
- a decision
- a process
- a programming language
- a tool

Example: Clone Detection, Bug Prediction
- the tool/algorith
 Does it work?
- the individual developer
 How/why does he produce bugs/clones?
- about the culture/process in the team
 How does the team prevent bugs/clones?
 How successful is this prevention?
- about the programming language
 How vulnerable is the programming language towards clones / bugs?
 (COBOL vs. AspectJ)

Design in advance
- avoid “easy” units of analysis
 + cases restricted to Java because parser
 - Is the language really an issue for your research question?
 + report size of the system (KLOC, # Classes, # Bug reports)
 - Is team composition not more important?
Threats to Validity (Experiments)

1. Conclusion validity
2. Internal validity
3. Construct validity
4. External validity
Threats to validity (Case Studies)

• Source: Runeson, P. and Höst, M. 2009. Guidelines for conducting and reporting case study research in software engineering.

1. **Construct validity**
 • Do the operational measures reflect what the researcher had in mind?

2. **Internal validity**
 • Are there any other factors that may affect the results?
 ➡ Mainly when investigating causality!

3. **External validity**
 • To what extent can the findings be generalized?
 ➡ Precise research question & units of analysis required

4. **Reliability**
 • To what extent is the data and the analysis dependent on the researcher (the instruments, ...)

Other categories have been proposed as well
• credibility, transferability, dependability, confirmability
1. Construct validity
 - *Do the operational measures reflect what the researcher had in mind?*
 - Time recorded vs. time spent
 - Execution time, memory consumption, ...
 + noise of operating system, sampling method
 - Human-assigned classifiers (bug severity, ...)
 + risk for “default” values
 - Participants in interviews have pressure to answer positively

2. Internal validity
 - *Are there any other factors that may affect the results?*
 - Were phenomena observed under special conditions
 + in the lab, close to a deadline, company risked bankruptcy, ...
 + major turnover in team, contributors changed (open-source), ...
 - Similar observations repeated over time (learning effects)
3. External validity
 • To what extent can the findings be generalized?
 • Does it apply to other languages? other sizes? other domains?
 • Background & education of participants
 • Simplicity & scale of the team
 + small teams & flexible roles vs. large organizations & fixed roles

4. Reliability
 • To what extent is the data and the analysis dependent on the researcher (the instruments, ...)
 • How did you cope with bugs in the tool, the instrument?
 • Classification: if others were to classify, would they obtain the same?
 • How did you search for evidence in mailing archives, bug reports, ...
Threats to validity = Risk Management

No experimental design can be “perfect”
... but you can limit the chance of deriving false conclusions

- manage the risk of false conclusions as much as possible
 + likelihood
 + impact

- state clearly what and how you alleviated the risk (replication !)
 + construct validity
 - precise metric definitions
 - GQM paradigm
 + internal & external validity
 - report the context consciously
 + Reliability
 - bugs in tools: testing, usage of well-known libraries, ...
 - classification: develop guidelines & others repeat classification
 - search for evidence (mailing archives, bug reports, ...):
 have an explicit search procedure
1. Research Methods

Introduction
- Origins of Computer Science
- Research Philosophy

Research Methods
- 1. Feasibility study
- 2. Pilot Case
- 3. Comparative study
- 4. Observational Study [a.k.a. Etnography]
- 5. Literature survey
- 6. Formal Model
- 7. Simulation

Conclusion
- Studying a Case vs. Performing a Case Study
 + Proposition
 + Unit of Analysis
 + Threats to Validity
Studying a case vs. Performing a case study

1. Questions
 • most likely “How” and “Why”; also sometimes “What”

2. Propositions (a.k.a. Purpose)
 • explanatory: where to look for evidence
 • exploratory: rationale and direction
 + example: Christopher Columbus asks for sponsorship
 - Why three ships (not one, not five)?
 - Why going westward (not south?)
 • role of “Theories”
 + possible explanations (how, why) for certain phenomena
 ➔ Obtained through literature survey

3. Unit(s) of analysis
 • What is the case?

4. Logic linking data to propositions

5. Criteria for interpreting findings
 • Chain of evidence from multiple sources
 • When does data confirm proposition? When does it refute?