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Abstract. At our behest or otherwise, while our software is being ex-
ecuted, a huge variety of design assumptions is continuously matched
with the truth of the current condition. While standards and tools ex-
ist to express and verify some of these assumptions, in practice most of
them end up being either sifted off or hidden between the lines of our
codes. Across the system layers, a complex and at times obscure web of
assumptions determines the quality of the match of our software with its
deployment platforms and run-time environments. Our position is that
it becomes increasingly important being able to design software systems
with architectural and structuring techniques that allow software to be
decomposed to reduce its complexity, but without hiding in the process
vital hypotheses and assumptions. In this paper we discuss this problem,
introduce three potentially dangerous consequences of its denial, and
propose three strategies to facilitate their treatment. Finally we propose
our vision towards a new holistic approach to software development to
overcome the shortcomings offered by fragmented views to the problem
of assumption failures.

1 Introduction

We are living in a society that cannot do without computer systems. Services
supplied by computer systems have permeated our environments and deeply
changed our societies and the way we live in them. Computers pervade our lives,
integrating themselves in all environments. At first confined in large control
rooms, now they take the form of tiny embedded systems soon to be “sprayed”
on physical entities so as to augment them with advanced processing and com-
munication capabilities. Thus it is very much evident to what extent we depend
on computers. What is often overlooked by many is the fact that most of the
logics behind computer services supporting and sustaining our societies lies in
the software layers. Software has become the point of accumulation of a large
amount of complexity [1]. It is ubiquitous, mobile, and has pervaded all aspects
of our lives. What is more important for this discussion, software is the main
culprit behind the majority of computer failures [2–4].
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Among the reasons that brought to this state of things we focus our atten-
tion here on a particular one. Clever organizations and system structures allowed
the visible complexity of software development to be reduced—at first through
modules and layers, then by means of objects, and more recently with services,
components, aspects, and models. As a result, we have been given tools to com-
pose and orchestrate complex, powerful, and flexible software-intensive systems
in a relatively short amount of time. The inherently larger flexibility of software
development turned software into the ideal “location” where to store the bulk of
the complexity of nowadays’ computer-based services. Unfortunately, this very
same characteristic of software makes it also considerably fragile to changes [1].
In particular software’s flexibility also means that most of the assumptions drawn
at design-time may get invalidated when the software system is ported, reused,
redeployed, or simply when it is executed in a physical environment other than
the one originally meant for. This means that truly resilient software systems
demand special care to assumption failures detection, avoidance, and recovery.
Despite this fact, no systematic approach allows yet for the expression and ver-
ification of hypotheses regarding the expected properties and behaviors of

– the hardware components (e.g. the failure semantics of the memory modules
we depend on);

– third-party software (e.g. the reliability of an open-source software library
we make use of);

– the execution environment (e.g. the security provisions offered by the Java
execution environment we are currently using);

– the physical environment (e.g., the characteristics of the faults experienced
in a space-borne vehicle orbiting around the sun).

While several tools exist, in practice most of the above assumptions often
end up being either sifted off or “hardwired” in the executable code. As such,
those removed or concealed hypotheses cannot be easily inspected, verified, or
maintained. Despite the availability of several conceptual and practical tools—
a few examples of which are briefly discussed in Sect. 4—still we are lacking
methodologies and architectures to tackle this problem in its complex entirety—
from design-time to the various aspects of the run-time. As a consequence, our
software systems often end up being entities whose structure, properties, and de-
pendencies are not completely known, hence at times deviate from their intended
goals.

Across the system layers, a complex and at times obscure “web” of software
machines is being executed concurrently by our computers. Their mutual depen-
dencies determine the quality of the match of our software with its deployment
platform(s) and run-time environment(s) and, consequently, their performance,
cost, and in general their quality of service and experience. At our behest or oth-
erwise, a huge variety of design assumptions is continuously matched with the
truth of the current conditions. A hardware component assumed to be available;
an expected feature in an OSGi bundle or in a web browser platform; a memory
management policy supported by a mobile platform [5], or ranges of operational
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conditions taken for granted at all times—all are but assumptions and all have
a dynamically varying truth value.

Our societies, our very lives, are often entrusted to machines driven by soft-
ware; weird as it may sound, in some cases this is done without question—as an
act of faith as it were. This is clearly unacceptable. The more we rely on com-
puter systems—the more we depend on their correct functioning for our welfare,
health, and economy—the more it becomes important to design those systems
with architectural and structuring techniques that allow software complexity to
be decomposed, but without hiding in the process those hypotheses and assump-
tions pertaining e.g. the target execution environment and the expected fault-
and system models.

Our position is that existing tools will have to be augmented so as to min-
imize the risks of assumption failures e.g. when porting, deploying, or moving
software to a new machine. We envision novel autonomic run-time executives
that continuously verify those hypotheses and assumptions by matching them
with endogenous knowledge deducted from the processing subsystems as well as
exogenous knowledge derived from their execution and physical environments.
Mechanisms for propagating such knowledge through all stages of software de-
velopment would allow the chances of assumptions failures to be considerably re-
duced. The ultimate result we envisage is the ability to express truly assumption
failure-tolerant software systems, i.e., software systems that endorse provisions
to efficiently and effectively tackle—to some agreed upon extent—the problem
of assumption failures.

This paper makes three main contributions. A first one is exposing our vi-
sion of assumption failure-tolerant software systems. Such systems explicitly ad-
dress three main “hazards” of software development, which we call the Horning
syndrome, the Hidden Intelligence syndrome, and the Boulding syndrome. As-
sumption failures and the three syndromes are presented in Sect. 2. A second
contribution is introducing the concept of assumption failure-tolerant software
systems and providing three examples of strategies—one for each of the above
syndromes. This is done in Sect. 3. A third contribution is our vision of a holis-
tic approach to resilient software development, where the concept of assumption
failure plays a pivotal role. Such vision—introduced after a brief overview of re-
lated and complementary technologies in Sect. 4—is the subject of Sect. 5. The
paper is concluded by Sect. 6 in which we summarize our main lessons learned
and provide our conclusions.

2 Three Hazards of Software Development

As mentioned before, assumption failures may have dire consequences on soft-
ware dependability. In what follows we consider two well known exemplary cases
from which we derive a base of three “syndromes” that we deem as the main
hazards of assumption failures. We assume the reader to be already familiar with
the basic facts of those two cases. Furthermore, we shall focus our attention only
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on a few aspects and causes—namely those more closely related to the subject
at hand.

2.1 Case 1: Ariane 5 Flight 501 Failure

On June 4, 1996, the maiden flight of the Ariane 5 rocket ended in a failure just
forty seconds after its lift-off. At an altitude of about 3,700 meters, the launcher
veered off its flight path, broke up and exploded. After the failure, the European
Space Agency set up an independent Inquiry Board to identify the causes of
the failure. The Inquiry Board unravelled several reasons, the most important
of which was a failure in the so-called Inertial Reference System (IRS), a key
component responsible for flight attitude and movement control in space. Being
so critical for the success of the mission, the IRS adopted a simple hardware
fault-tolerance design pattern: two identical replicas were operating in parallel
(hot standby), executing the same software system. As mentioned before, we
shall not focus here on all the design faults of this scheme, e.g. its lack of design
diversity [6]. Our focus will be on one of the several concomitant causes, namely a
software reuse error in the IRS. The Ariane 5 software included software modules
that were originally developed and successfully used in the Ariane 4 program.
Such software was written with a specific physical environment as its reference.
Such reference environment was characterized by well defined ranges for several
flight trajectory parameters. One such parameter was the rocket’s maximum
horizontal velocity. In the Ariane 4, horizontal velocity could be represented
as a 16-bit signed integer. The Ariane 5 was a new generation, thus it was
faster. In particular horizontal velocity could not be represented in a signed short
integer, which caused an overflow in both IRS replicas. This event triggered a
chain of failures that led the rocket to complete loss of guidance and attitude
information shortly after the start of the ignition sequence. Now completely blind
and unaware, the Ariane 5 committed self destruction as an ultimate means to
prevent any further catastrophic failures.

The Ariane 5 failure provides us with several lessons—in the rest of this
subsection we shall focus on two of them.

Horning Syndrome. The Ariane 5 failure warns us of the fact that an as-
sumption regarding the target physical environment of a software component
may clash with a real life fact. In the case at hand, the target physical environ-
ment was assumed to be one where horizontal velocity would not exceed some
agreed upon threshold. This assumption clashed with the characteristics of a
new target environment.

The term we shall use to describe this event is “assumption failure” or
“assumption-versus-context clash”. The key lesson in this case is then that the
physical environment can play a fundamental role in determining software qual-
ity. By paraphrasing a famous quote by Whorf, the environment shapes the
way our fault-tolerance software is constructed and determines how dependable
it will ultimately be. James Horning described this concept through his well
known quote [7]:
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“What is the most often overlooked risk in software engineering?
That the environment will do something the designer never anticipated.”

This is precisely what happened in the case of the failure of the Ariane
5’s IRS: new unanticipated environmental conditions violated some design as-
sumptions. For this reason we call this class of assumption failures hazards “the
Horning Syndrome”, or SH for brevity. For the same reason we shall use the
terms “Horning Assumptions” (AH) and “Horning Failures” (FH) respectively
to refer to this class of assumptions and of failures.

In what follows we shall use lowercase letters in Italics to denote assumptions.
Given a letter representing an assumption, the same letter in bold typeface shall
represent the true value for that assumption. As an example, the Ariane-5 failure
was caused (among other reasons) by a clash between f : {“Horizontal Velocity
can be represented by a short integer”} and f : {“Horizontal velocity is now n”},
where n is larger than the maximum short integer.

Hidden Intelligence Syndrome. The second aspect we deem important to
highlight in the context of the failure of the IRS is related to a lack of propa-
gation of knowledge. The Horning Assumption that led to this Horning Failure
originated at Ariane 4’s design time. On the other hand the software code that
implemented the Ariane 4 design did not include any mechanism to store, in-
spect, or validate such assumption. This vital piece of information was simply
lost. This loss of information made it more difficult to verify the inadequacy of
the Ariane 4 software to the new environment it had been deployed. We call an
accident such as this a case of the Hidden Intelligence Syndrome (SHI). Con-
sequently we use the terms Hidden Intelligence Assumption (AHI) and Hidden
Intelligence Failure (FHI).

Unfortunately accidents due to the SH and the SHI are far from being
uncommon—computer history is crowded with examples, with a whole range
of consequences. In what follows we highlight this fact in another well known
case—the deadly Therac-25 failures.

2.2 Case 2: The Therac-25 Accidents

The Therac-25 accidents have been branded as “the most serious computer-
related accidents to date” [8]. Several texts describe and analyze them in detail—
including the just cited one. As we did for the Ariane 5, here we shall not provide
yet another summary of the case; rather, we shall highlight the reasons why the
Therac-25 is also a case of the above assumption hazards and of a third class of
hazards.

The Therac-25 was a so-called “linac,” that is, a medical linear accelerator
that uses accelerated electrons to create high-energy beams to destroy tumors
with minimal impact on the surrounding healthy tissue. It was the latest member
of a successful family of linacs, which included the Therac-6 and the Therac-
20. Compared to its predecessors, model 25 was more compact, cheaper and
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had more functional features. In particular the cheaper cost was a result of
several modifications including a substantial redesign of the embedded hardware-
software platform. In the redesign, some expensive hardware services were taken
over by the software layer. For instance it was decided to remove hardware
interlocks that would shut the machine down in the face of certain exceptions.

There is evidence that several such exceptions had occurred while previous
models, e.g. the Therac-20, were operative. Unfortunately, none of these occur-
rences were reported or fed back to the design process of the Therac-25. Had
it been otherwise, they would have revealed that certain rare combinations of
events triggered the emission of extraordinary high levels of energy beams—were
it not for the safety interlocks present in the old models. History repeated itself
with model 25, only this time the killer doses of beams were emitted, resulting
in the killing or serious injuring of several people.

Another Case of the Horning Syndrome. We observe how the Therac
may be considered as a special case of Horning Assumption failure in which the
“unanticipated behavior” is due to endogenous causes and Horning’s “environ-
ment” is the hardware platform. The “culprit” in this case is the clash between
two design assumptions and two indisputable facts. Assumptions were fault as-
sumption f : {“No residual fault exists”} and hardware component assumption
p: {“All exceptions are caught by the hardware and the execution environment,
and result in shutting the machine down”}. The corresponding facts were f :
{“Residual faults still exist”}, that is ¬f , and p: {“Exceptions exist that are not
caught”}—that is, ¬p. The unanticipated behavior is in this case the machine
still remaining operative in a faulty state, thus the violation of the safety mission
requirements.

Another Case of Hidden Intelligence. As mentioned already, because of
the failure-free behavior of the Therac-20, its software was considered as fault-
free. Reusing that software on the new machine model produced a clash. Thus
we could say that, for the Therac family of machines, a hardware fault-masking
scheme translated into software hidden intelligence—that is, a case of the SHI .
Such hidden intelligence made it more difficult to verify the inadequacy of the
new platform to its operational specifications.

Boulding Syndrome. Finally we observe how the Therac-25 software, despite
its real-time design goals, was basically structured as a quasi closed-world system.
Such systems are among the naivest classes of systems in Kenneth Boulding’s
famous classification [9]: quoting from the cited article, they belong to the cate-
gories of “Clockworks” (“simple dynamic system with predetermined, necessary
motions”) and “Thermostats” (“control mechanisms in which [. . .] the system
will move to the maintenance of any given equilibrium, within limits”). Such
systems are characterized by predefined assumptions about their platform, their
internal state, and the environment they are meant to be deployed in. They are
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closed, “blind” entities so to say, built from synchronous assumptions, and de-
signed so as to be plugged in well defined hardware systems and environments
whose changes, idiosyncrasies, or fluctuations most of them deliberately ignore.
Using a well known English vernacular, they are “sitting ducks” to change—
they keep on doing their prescribed task, as defined at design time, irrespective
of environmental conditions; that is, they lack the ability to detect and respond
to deployment- and run-time changes.

Clearly the Therac machines and their software comply to this definition. In
particular those machines were missing introspection mechanisms (for instance,
self-tests) able to verify whether the target platform did include the expected
mechanisms and behaviors.

A case like the Therac’s—that is, when a clash exists between a system’s
Boulding category and the actual characteristics of its operational environment—
shall be referred to in what follows as a case of the Boulding Syndrome (SB).
The above mentioned Boulding categories and clashes will also be respectively
referred to as Boulding Assumptions (SB) and Boulding Failures (SB).

2.3 Preliminary Conclusions

By means of two well known cases we have shown how computer system failures
can be the result of software assumption failures. Moreover, in so doing we have
introduced three major hazards or syndromes requiring particular attention:

Horning syndrome: mistakenly not considering that the physical environ-
ment may change and produce unprecedented or unanticipated conditions;

Hidden Intelligence syndrome: mistakenly concealing or discarding impor-
tant knowledge for the sake of hiding complexity;

Boulding syndrome: mistakenly designing a system with insufficient context-
awareness with respect to the current environments.

In what follows we describe examples of strategies to treat some cases of the
three syndromes so as to decrease the risk to trigger assumption failures.

3 Assumption Failure-Tolerant Software Systems

The key strategy we adopt here is to offer the designer the possibility to postpone
the choice of one out of multiple alternative design-time assumptions to a proper
future time (compile-time, deployment-time, run-time, etc.) In what follows we
shall describe how to do so for the following classes of assumptions:

– Assumptions related to the failure semantics of hardware components.
– Assumptions related to the fault-tolerance design patterns to adopt.
– Assumptions related to dimensioning of resources.
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3.1 Assumptions on Hardware Components’ Failure Semantics

As we have already remarked, software depends on certain behaviors expected
from the underlying hardware architecture. Hardware neutrality and the prin-
ciples of layered design dictate that most of the actual processes and actors in
the bare machine are not disclosed. Thus for instance we rarely know (and often
care about) the particular technology of the main memory integrated circuits
our software is making use of.

This is a case of the Hidden Intelligence syndrome. By not expressing ex-
plicitly our requirements concerning the way hardware (e.g., memory modules)
should behave we leave the door open to dependability assumption failures.

As an example, while yesterday’s software was running atop CMOS chips,
today a common choice e.g. for airborne applications is SDRAM—because of
speed, cost, weight, power and simplicity of design [10]. But CMOS memories
mostly experience single bit errors [11], while SDRAM chips are known to be
subjected to several classes of severe faults, including so-called “single-event
effects” [10], i.e., a threat that can lead to total loss of a whole chip. Examples
include:

1. Single-event latch-up (SEL), a threat that can bring to the loss of all data
stored on chip [12].

2. Single-event upset (SEU), leading to frequent soft errors [13, 14].
3. Single-event functional interrupt (SFI), i.e. a special case of SEU that places

the device into a test mode, halt, or undefined state. The SFI halts normal
operations, and requires a power reset to recover [15].

Furthermore [10] remarks how even from lot to lot error and failure rates can
vary more than one order of magnitude. In other words, the superior performance
of the new generation of memories is paid with a higher instability and a trickier
failure semantics.

Let us suppose for the time being that the software system at hand needs
to be compiled in order to be executed on the target platform. The solution we
propose to alleviate this problem is as follows:

– First, we assume memory access is abstracted (for instance through services,
libraries, overloaded operators, or aspects). This allows the actual memory
access methods to be specified in a second moment.

– Secondly, a number of design-time hypotheses regarding the failure semantics
of the hardware memory subsystem are drawn. These may take the form of
fault/failure assumptions such as for instance:
f0: “Memory is stable and unaffected by failures”.
f1: “Memory is affected by transient faults and CMOS-like failure behav-

iors”.
f2: “Memory is affected by permanent stuck-at faults and CMOS-like failure

behaviors”.
f3: “Memory is affected by transient faults and SDRAM-like failure behav-

iors, including SEL”.
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Fig. 1. The Serial Presence Detect (yellow circle) allows information about a com-
puter’s memory module, e.g. its manufacturer, model, size, and speed, to be accessed.

f4: “Memory is affected by transient faults and SDRAM-like failure behav-
iors, including SEL and SEU”.

– For each assumption fi (in this case 0 ≤ i ≤ 4) a diverse set of memory
access methods, Mi, is designed. With the exception of M0, each Mi is a
fault-tolerant version specifically designed to tolerate the memory modules’
failure modes assumed in fi.

– To compile the code on the target platform, an Autoconf-like toolset [16]
is assumed to be available. Special checking rules are coded in the toolset
making use of e.g. Serial Presence Detect (see Fig. 1) to get access to infor-
mation related to the memory modules on the target computer. For instance,
Linux tools such as “lshw” provide higher-level access to information such
as the memory modules’ manufacturer, models, and characteristics (see an
example in Fig. 2). Such rules could access local or remote, shared databases
reporting known failure behaviors for models and even specific lots thereof.
Once the most probable memory behavior f is retrieved, a method Mj is se-
lected to actually access memory on the target computer. Selection is done
as follows: first we isolate those methods that are able to tolerate f, then
we arrange them into a list ordered according to some cost function (e.g.
proportional to the expenditure of resources); finally we select the minimum
element of that list.

The above strategy allows the designer to postpone the choice between al-
ternative design-time assumptions to the right moment, that it, when the code
is compiled on the chosen target action. A similar strategy could be embedded
in the execution environment, e.g. a Web browser or a Java Virtual Machine.
Such strategy could selectively provide access at deployment time to knowledge
necessary to choose which of the design-time alternative assumptions has the
highest chance to match reality. Note that our strategy helps avoiding SHI and
brings the designer to explicitly deal with the problem of assumption failures.
Furthermore this is done with full separation of the design concerns.
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*-memory

description: System Memory

physical id: 1000

slot: System board or motherboard

size: 1536MiB

*-bank:0

description: DIMM DDR Synchronous 533 MHz (1.9 ns)

vendor: CE00000000000000

physical id: 0

serial: F504F679

slot: DIMM_A

size: 1GiB

width: 64 bits

clock: 533MHz (1.9ns)

*-bank:1

description: DIMM DDR Synchronous 667 MHz (1.5 ns)

vendor: CE00000000000000

physical id: 1

serial: F33DD2FD

slot: DIMM_B

size: 512MiB

width: 64 bits

clock: 667MHz (1.5ns)

Fig. 2. Excerpt from the output of command-line sudo lshw on a Dell Inspiron 6000
laptop.

Comparison with existing strategy. A somewhat similar strategy is used for
performance enhancement. Applications such as the mplayer video player [17]
can take advantage of predefined knowledge about the possible target processor
and enable optimized methods to perform some of their tasks. Mplayer declares
this by displaying messages such as “Using SSE optimized IMDCT transform” or
“Using MMX optimized resampler”. Our procedure differs considerably from the
mplayer’s, as it focuses on non-functional (dependability) enhancements. Fur-
thermore, it is a more general design methodology and makes use of knowledge
bases. Meta-object protocols, compiler technology, and aspects could provide
alternative way to offer similar services.

3.2 Choice of Fault-tolerance Design Patterns

The choice of which design pattern to use is known to have a direct influence
on a program’s overall complexity and performance. What is sometimes over-
looked is the fact that fault-tolerance design patterns have a strong influence on
a program’s actual ability to tolerate faults. For instance, a choice like the redo-
ing design pattern [18]—i.e., repeat on failure—implies assumption e1 : {“The
physical environment shall exhibit transient faults”}, while a design pattern such
as reconfiguration—that is, replace on failure—is the natural choice after an
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assumption such as e2 : {“The physical environment shall exhibit permanent
faults”}. Of course clashes are always possible, which means in this case that
there is a non-zero probability of a Horning Assumption failure—that is, a case
of the SH . Let us observe that:

1. A clash of assumption e1 implies a livelock (endless repetition) as a result
of redoing actions in the face of permanent faults.

2. A clash of assumption e2 implies an unnecessary expenditure of resources as
a result of applying reconfiguration in the face of transient faults.

The strategy we suggest to tackle this case is to offer the designer the pos-
sibility to postpone the binding of the actual fault-tolerance design pattern and
to condition it to the actual behavior of the environment.

In what follows we describe a possible implementation of this run-time strat-
egy.

– First, we assume the software system to be structured in such a way as
to allow an easy reconfiguration of its components. Natural choices for this
are service-oriented and/or component-oriented architectures. Furthermore
we assume that the software architecture can be adapted by changing a
reflective meta-structure in the form of a directed acyclic graph (DAG). A
middleware supporting this is e.g. ACCADA [19].

– Secondly, the designer draws a number of alternative hypotheses regarding
the faults to be experienced in the target environments. A possible choice
could be for instance e0: “No faults shall be experienced” and then e1 and
e2 from above.

– For each fault-tolerance assumption (in this case e1 and e2) a matching
fault-tolerant design pattern is designed and exported e.g. in the service or
component registry. The corresponding DAG snapshots are stored in data
structures D1 and D2.

– Through e.g. publish/subscribe, the supporting middleware component re-
ceives notifications regarding the faults being detected by the main compo-
nents of the software system. Such notifications are fed into an Alpha-count
filter [20, 21], that is, a count-and-threshold mechanism to discriminate be-
tween different types of faults.

– Depending on the assessment of the Alpha-count oracle, either D1 or D2 are
injected on the reflective DAG. This has the effect or reshaping the software
architecture as in Fig. 3. Under the hypothesis of a correct oracle, such
scheme avoids clashes: always the most appropriate design pattern is used
in the face of certain classes of faults.

The above strategy is a second example of a way to postpone the choice
among alternative design-time assumptions to the right moment—in this case
at run-time, when the physical environment changes its characteristics or when
the software is moved to a new and different environment. As a consequence,
our strategy has the effect to help avoiding SH and to force the designer not to
neglect the problem of assumption failures.
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Fig. 3. Transition from a redoing scheme (D1) to a reconfiguration scheme (D2) is
obtained by replacing component c3, which tolerates transient faults by redoing its
computation, with a 2-version scheme where a primary component (c3.1) is taken over
by a secondary one (c3.2) in case of permanent faults.

We have developed a prototypical version of this strategy (see Fig. 4) and we
are now designing a full fledged version based on the cited ACCADA and on an
Alpha-count framework built with Apache Axis2 [22] and MUSE [23].

Comparison with existing strategies. Also in this case there exist strategies
that postpone the choice of the design pattern to execution time, though to the
best of our knowledge this has been done only with the design goal of achieving
performance improvements. A noteworthy example is FFTW, a code generator
for Fast Fourier Transforms that defines and assembles (before compile time)
blocks of C code that optimally solve FFT sub-problems on a given machine [24].
Our strategy is clearly different in that it focuses on dependability and makes
use of a well-known count-and-threshold mechanism.

3.3 Assumptions Related to Dimensioning Replicated Resources

As well known, a precise characterization of the amount of resources necessary
to deal with a certain situation is not always easy or even possible to find out. In
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Fig. 4. A scenario involving a watchdog (left-hand window) and a watched task (right-
hand). A permanent design fault is repeatedly injected in the watched task. As a
consequence, the watchdog “fires” and an alpha-count variable is updated. The value
of that variable increases until it overcomes a threshold (3.0) and correspondingly the
fault is labeled as “permanent or intermittent.”

some cases, such amount is not to be considered as a static value, fixed once and
for all at design-time. Rather, it should be modeled as a dynamic system, i.e. a
variable changing over time. When the situation to deal with is a threat to the
quality of a software service, then the common approach is to foresee a certain
amount of redundancy (time-, physical-, information-, or design-redundancy).
For instance, replication and voting can be used to tolerate physical faults1.
An important design problem is redundancy dimensioning. Over-dimensioning
redundancy or under-dimensioning it would respectively lead to either a waste of
resources or failures. Ideally the replication and voting scheme should work with
a number of replicas that closely follows the evolution of the disturbance. In other
words, the system should be aware of changes in certain physical variables or at
least of the effect they are producing to its internal state. Not doing so—that
is, choosing once and for all a certain degree of redundancy—means forcing the
designer to take one assumption regarding the expected range of disturbances. It
also means that the system will have a predetermined, necessary “motion” that
will not be affected by changes, however drastic or sudden. In other words, the
system will be a Boulding’s Thermostat. In what follow we describe a strategy

1 Obviously simple replication would not suffice to tolerate design faults, in which case
a design diversity scheme such as N -Version Programming would be required.
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that can be used to enhance the Boulding category of a replication and voting
scheme, thus avoiding a case of the SB .

The strategy we propose is to isolate redundancy management at architec-
tural level, and to use an autonomic computing scheme to adjust it automatically.
In what follows we describe a possible implementation for this run-time strategy.

– First, we assume that the replication-and-voting service is available through
an interface similar to the one of the Voting Farm [25]. Such service sets
up a so-called “restoring organ” [26] after the user supplied the number of
replicas and the method to replicate.

– Secondly, we assume that the number of replicas is not the result of a fixed
assumption but rather an initial value possibly subjected to revisions. Revi-
sions are triggered by secure messages that ask to raise or lower the current
number of replicas.

– Third, we assume a middleware component such as our Reflective Switch-
boards [27] to be available. Such middleware deducts and publishes a measure
of the current environmental disturbances. In our prototypical implementa-
tion, this is done by computing, after each voting, the “distance-to-failure”
(dtof), defined as

dtof(n, m) = dn

2
e −m,

where n is the current number of replicas and m is the amount of votes
that differ from the majority, if any such majority exists. If no majority can
be found dtof returns 0. As can be easily seen, dtof returns an integer in
[0, dn

2 e] that represents how close we were to failure at the end of the last
voting round. The maximum distance is reached when there is full consensus
among the replicas. On the contrary the larger the dissent, the smaller is the
value returned by dtof, and the closer we are to the failure of the voting
scheme. In other words, a large dissent (that is, small values for dtof) is
interpreted as a symptom that the current amount of redundancy employed
is not large enough. Figure 5 depicts some examples when the number of
replicas is 7.

– When dtof is critically low, the Reflective Switchboards request the replica-
tion system to increase the number of redundant replicas.

– When dtof is high for a certain amount of consecutive runs—1000 runs in our
experiments—a request to lower the number of replicas is issued. Figure 6
shows how redundancy varies in correspondence of simulated environmental
changes.

Function dtof is just one possible example of how to estimate the chance of
an impending assumption failure when dimensioning redundant resources. Our
experiments [27] show that even such a simplistic scheme allows most if not all
dimensioning assumption failures to be avoided. Despite heavy and diversified
fault injection, no clashes were observed during our experiments. At the same
time, as a side effect of assumption failure avoidance, our autonomic scheme
reduces the amount of redundant resources to be allocated and managed. This
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can be seen for instance in Fig. 7 which plots in logarithmic scale the distribu-
tion of the amount of redundancy employed by our scheme during one of our
experiments.

Fig. 5. Distance-to-failure in a replication-and-voting scheme with 7 replicas. In (a),
consensus is reached, which corresponds to the farthest “distance” to failure. From (b)
to (d), more and more votes dissent from the majority (red circles) and correspondingly
the distance shrinks. In (d), no majority can be found—thus, failure is reached.

The above strategy shows how SH and SB may be avoided—in a special
case—by creating context-aware, autonomically changing Horning Assumptions.
In other words, rather than postponing the decision of the value to bind our as-
sumption to, here we embedded our software system in a very simple autonomic
architecture that dynamically revise dimensioning assumptions. The resulting
system complies to Boulding’s categories of “Cells” and “Plants”, i.e. open soft-
ware systems with a self-maintaining structure [9].

4 Related Technologies

As mentioned in the introduction, several conceptual and practical tools are
available to deal to some extent with problems related to assumption failures.
Such tools may be situated in one or more of the following “time stages”: design-
time, verification-time, compile-time, deployment-time, and run-time. In what
follows we briefly discuss some families of those tools pointing out their relations
with the subjects treated in this paper.

Verification and validation activities, i.e., checking and certification of com-
pliance to specifications, are a fundamental tool to verify and prove the ab-
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Fig. 6. During a simulated experiment, faults are injected, and consequently distance-
to-failure decreases. This triggers an autonomic adaptation of the degree of redundancy.

sence of some context clashes. In particular re-qualification is an activity
prescribed each time a system (not necessarily a software system) is “re-
located” (e.g. reused, or ported); or in case of replacement of some of its
parts; or when a system is connected to another system. We observe how,
verification and validation being in general off-line activities, assumptions
are matched against a reference context information (the hypothized truth)
that might differ from the actual context—from “real life”, as it were.
Particularly interesting is the family of techniques known as formal verifica-
tion, which make use of formal (mathematical) methods to assess a system’s
properties. Properties are described through a formal specification. Formal
specification languages, such as the Z notation [28, 29], can be used for the
non-ambiguous expression of software properties. Compliant tools can then
verify the validity of those properties and detect cases of assumption failures.
Semantics [30] is another family of techniques that aim at expressing and
machine-verifying the meanings of computing systems, their processing and
environments.

Unified Modeling Language (UML) is the de-facto modeling language for
object-oriented software engineering. A discussion of UML would lead us
astray, thus we shall just remark here how UML provides means to describe
– the dependencies among the modeled software parts via component di-

agrams;
– the mapping of software parts onto the target hardware and execution

environment via deployment diagrams;
– assorted knowledge, in the form of annotations;
– rules and constraints, as for instance in the contexts and properties of

the Object Constraint Language [31].
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Fig. 7. Histogram of the employed redundancy during an experiment that lasted 65 mil-
lion simulated time steps. For each degree of redundancy r (in this case r ∈ {3, 5, 7, 9})
the graph displays the total amount of time steps the system adopted assumption a(r):
{“Degree of employed redundancy is r”}. A logarithmic scale is used for time steps.
Despite fault injection, in the reported experiment the system spends 99.92798% of its
execution time making use of the minimal degree of redundancy, namely 3, without
incurring in failures.

UML and related tools situate themselves at design level though can be used
to generate implementation artifacts directly from the models. By creating a
stronger link between design-time and other “time stages” such tools—when
used correctly—make it more difficult to incur in cases of the SHI that are
due to model-vs.-code inconsistencies. We observe how the produced artifacts
are static entities that strictly follow design-time rules; as such they are not
able to self-adapt so as to withstand faults or re-optimize in view of changed
conditions. In other words, those implementation artifacts may suffer from
the SB .

Design by Contract [32] is a design approach that systematically deals with
the mutual dependences of cooperating software components. Depending
on the context, any two software components may find themselves in the
role of a client and of a supplier of some service. A well-defined “contract”
formally specifies what are the obligations and benefits of the two parties.
This is expressed in terms of pre-conditions, post-conditions, and invariants.
Design by Contract forces the designer to consider explicitly the mutual
dependencies and assumptions among correlated software components. This
facilitates assumption failures detection and—to some extent—treatment.
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The concept of contracts has been recently successfully applied to security
of mobile applications [33, 5].

Web Services standards provide numerous examples of specifications to ex-
pose, manage, and control capabilities and features of web services architec-
tures. It is worth highlighting here a few of these standards:
WSDL (Web Services Description Language) is an XML language that al-

lows a client to query and invoke the services exported by any third-party
web service on the Internet. This high degree of flexibility exacerbates
the problem of depending on third party software components, i.e., soft-
ware of unknown characteristics and quality [34]. The need to discipline
this potential chaos brought to a number of other specifications, such as
WS-Policy.

WS-Policy implements a sort of XML-based run-time version of Design
by Contract: using WS-Policy web service suppliers can advertise their
pre-conditions (expected requirements, e.g. related to security), post-
conditions (expected state evolutions), and invariants (expected stable
states).

WSDM (Web Services Distributed Management) and its two complemen-
tary specifications MUWS (Management Using Web Services) and MOWS
(Management Of Web Services), which respectively expose manageabil-
ity capabilities and define a monitoring and control model for Web Ser-
vices resources. This allows for instance quality-of-service monitorings,
enforcing a service level agreement, or controlling a task.

XML-based deployment descriptors typical of service-oriented and comp-
onent-oriented middleware platforms such as J2EE or CORBA are meant to
reduce the complexity of deployment especially in large-scale distributed sys-
tems. Their main focus is clearly deployment-time. Despite their widely rec-
ognized values, some authors observe that they exhibit a “semantic gap” [1]
between the design intent and their verbose and visually dense syntax, which
in practice risks to conceal the very knowledge they are intended to expose.
This is probably not so relevant as the exposed knowledge is meant to be
reasoned upon by machines.

Introspection. The idea of introspection is to gain access into the hidden soft-
ware complexity, to inspect the black-box structure of programs, and to inter-
pret their meaning through semantic processing, the same way the Semantic
Web promises to accomplish with the data scattered through the Internet.
Quoting [35], “introspection is a means that, when applied correctly, can
help crack the code of a software and intercept the hidden and encapsulated
meaning of the internals of a program”. Introspection is achieved e.g. by
instrumenting software with data collectors producing information available
in a form allowing semantic processing, such as RDF[36]. This idea is being
used in the Introspector project, which aims at instrumenting the GNU pro-
gramming tool-chain so as to create a sort of semantic web of all software
derived from those tools. The ultimate goal is very ambitious: “To create a
super large and extremely dense web of information about the outside world
extracted automatically from computer language programs” [35]. This would
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allow the design of software able to reason about the dependability charac-
teristics of other software. Tools based on introspection include:

GASTA (Gcc Abstract Syntax Tree Analysis) [37], which uses introspection
to automatically annotate C code to analyze the presence of null pointer
design faults),

GCC-XML [38], quite similar to GASTA, and
XOGASTAN (XML-Oriented Gcc Abstract Syntax Tree ANalyzer) [39],

which uses the abstract syntax tree produced by the GNU compiler while
processing a C file and translates it into XML. Another of the XOGAS-
TAN tools can then read the XML file and analyze it.

In its current form introspection is an off-line technique working at code
level.

Aspect orientation logically distinguishes a conventional language to encode
the functional logics; an aspect language to define specific interconnections
among a program’s basic functional units; and a so-called aspect weaver, that
is a program that composes a software system from both the functional and
the aspect logics. Multiple aspect logics can be defined to address different
systemic cross-cutting concerns, e.g. enhancing dependability, minimizing
energy expenditure, or increasing performance. This has two consequences
particularly important for our treatise: the most obvious one is that aspect
oriented languages realize pliable software that can be more easily main-
tained and adapted. Secondly, aspects encode knowledge that regard specific
“viewpoints”, and encourage the designers doing so. As such, aspect orien-
tation offers a conceptual and practical framework to deal with the three
syndromes of software development.

Model Driven Engineering (MDE) is a relatively new paradigm that com-
bines a number of the above approaches into a set of conceptual and practical
tools that address several shortcomings of traditional methods of software
development. In particular, MDE recognizes that “models alone are insuffi-
cient to develop complex systems” [1]. Contrarily to other approaches, which
develop general “languages” to express software models in an abstract way,
MDE employs so-called domain-specific modeling languages, which make
use of semantics to precisely characterize the relationships between concepts
and their associated constraints. The ability to express domain-specific con-
straints and to apply model checking allows several cases of assumption fail-
ures to be detected early in the software life cycle. Furthermore, MDE fea-
tures transformation engines and generators that synthesize from the models
various types of artifacts, e.g. source code and XML deployment descriptions.
MDE systematically combines several existing technologies and promises to
become soon one of the most important “tools” to tame the ever growing
complexity of software. As remarked by Schmidt [1], the elegance and the po-
tential power of MDE brought about many expectations; this notwithstand-
ing, scientific studies about the true potential of MDE are still missing [40,
41, 1].
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5 Lessons Learned and Vision

In previous section we discussed very concisely a few families of approaches
that can be effectively used to solve some of the problems we introduced in this
paper. Here we first summarize lessons learned while doing so, which then brings
us to our vision on future approaches and architectures to deal effectively with
assumption failures.

First of all, we can summarize that a number of powerful techniques and
tools exist or are in the course of being honed that can effectively help dealing
with assumption failures. What is also quite apparent is that each of them only
tackles specific aspects of the problem and takes a privileged view to it.

Our position in this context is that we are still lacking methodologies and
architectures to tackle this problem in its complex entirety. Fragmented views
to this very complex and entangled web are inherently ineffective or at best
sub-optimal. Missing one aspect means leaving a backdoor open to the manifes-
tations of the three syndromes introduced in Sect. 2. In other words, a holistic
approach is required. Taming the complexity of software systems so as to reach
true resilience in the face of assumption failures requires a unitary view to the
whole of the “time stages” of software development—what the General Systems
Theory calls a gestalt [9]. We believe one such gestalt for software systems to
be the concept of assumption failure. As Boulding writes in the cited paper,
gestalts are “of great value in directing research towards the gaps which they
reveal”—in the case at hand, the gaps of each fragmented view offered by the
approaches mentioned in Sect. 4 to the problems discussed in this paper2. In
a sense, most if not all of those approaches may be regarded as the result of
an attempt to divide and conquer the complexity of software development by
abstracting and specializing (that is, reducing the scope of) methods, tools, and
approaches. This specialization ends up in the ultimate case of the Hidden Intel-
ligence syndrome. A better approach would probably be considering the unity of
the design intent and using a holistic, “cross layered” approach to share sensible
knowledge unraveled in one layer and feed it back into the others. We envision
a general systems theory of software development in which the model, compile-,
deployment-, and run-time layers feed one another with deductions and control
“knobs”. The strategies discussed in this paper could provide the designer with
useful tools to arrange such cross-layering processes. This would allow knowledge
slipping from one layer to be still caught in another, and knowledge gathered in

2 In the cited paper Boulding applies this concept to the general system of disciplines
and theories: “Each discipline corresponds to a certain segment of the empirical
world, and each develops theories which have particular applicability to its own em-
pirical segment. Physics, chemistry, biology, psychology, sociology, economics and
so on all carve out for themselves certain elements of the experience of man and
develop theories and patterns of activity (research) which yield satisfaction in un-
derstanding, and which are appropriate to their special segments.” Gestalts, that is
meta-theories of systems, “might be of value in directing the attention of theorists
toward gaps in theoretical models, and might even be of value in pointing towards
methods of filling them.”
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one layer to be fed back into others. As an example, the strategy discussed in
Sect. 3.2 could feed an MDE tool whose deductions could in turn be published or
reified into a context-aware middleware such as our Reflective Switchboards [27].

One way to achieve this could be to arrange a web of cooperating reactive
agents serving different software design concerns (e.g. model-specific, deployment-
specific, verification-specific, execution-specific) responding to external stimuli
and autonomically adjusting their internal state. Thus a design assumption fail-
ure caught by a run-time detector should trigger a request for adaptation at
model level, and vice-versa. We believe that such a holistic approach would re-
alize a more complete, unitary vision of a system’s behavior and properties with
respect to the sum of the detached and fragmented views available so far.

6 Conclusions

Software systems are characterized by predefined assumptions about their in-
tended platform, their internal state, and the environments they are meant to
be deployed in. They are often closed, “blind” systems built from synchronous
assumptions and designed so as to be plugged in immutable hardware systems
and environments whose changes, idiosyncrasies, or fluctuations most of them
deliberately ignore. We believe that this approach to software development is
not valid anymore. Software ought to be designed and executed taking into ac-
count the inevitable occurrence of potentially significant and sudden changes
or failures in their infrastructure and surrounding environments. By analyzing
well-known software failures we identified three main threats to effective depend-
able software engineering, which we called the Hidden Intelligence syndrome, the
Horning syndrome, and the Boulding syndrome. In this paper we expressed our
thesis that services explicitly addressing those threats and requirements are an
important ingredient towards truly resilient software architectures. For each of
the above mentioned syndromes we also provided exemplary treatment strate-
gies, which form the core of our current work in the adaptive-and-dependable
software systems task force of the PATS research group at the University of
Antwerp. The key idea is to provide the designer with the ability to formulate
dynamic assumptions (assumption variables) whose boundings get postponed
at a later, more appropriate, time: at compile time, when we are dealing with
hardware platform assumptions for a stationary code; at deployment time, when
the application can be assembled on that stage; and at run-time, e.g. when a
change in the physical environment calls for adaptation to new environmental
conditions. We believe that an effective way to do this is by means of a web
of cooperating autonomic “agents” deducting and sharing knowledge, e.g. the
type of faults being experienced or the current values for properties regarding
the hardware platform and the execution environment. We developed a num-
ber of these agents, e.g. Reflective Switchboards [27], ACCADA [19], and an
Apache Axis2/MUSE web service framework. Our future steps include the de-
sign of a software architecture for assumptions failure treatment based on the
close cooperation of those and other building blocks.
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We conclude by observing how our research actually “stands on the shoulders
of giants”, as its conclusions closely follow those in the now classic 1956 paper of
Kenneth Boulding on General Systems Theory [9]: indeed, current software engi-
neering practices often still produce systems belonging to Boulding’s categories
of “Clockworks” and “Thermostats”. The root assumption of such systems is
their being closed-world, context-agnostic systems characterized by predefined
assumptions about their platform, their internal state, and the environment they
are meant to be deployed in, which makes them fragile to change. On the con-
trary, the unitary approach we envision, based on the proposed role of gestalt
for assumption failures, would make it possible to design and maintain actual
open software systems with a self-maintaining structure (known as “Cells” and
“Plants” according to Boulding’s terminology) and pave the way to the design
of fully autonomically resilient software systems (Boulding’s “Beings”).
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