
An Application-Level Dependable Techniquefor Farmer-Worker Parallel ProgramsVincenzo De Florio, Geert Deconinck, Rudy LauwereinsKatholieke Universiteit LeuvenElectrical Engineering Dept - ACCAKard. Mercierlaan 94 { B-3001 Heverlee { BelgiumAbstract. An application-level technique is described for farmer-workerparallel applications which allows a worker to be added or removed fromthe computing farm at any moment of the run time without a�ecting theoverall outcome of the computation. The technique is based on uncou-pling the farmer from the workers by means of a separate module whichasynchronously feeds these latter with new \units of work" on an on-demand basis, and on a special feeding strategy based on bookkeeping thestatus of each work-unit. An augmentation of the LINDA model is �nallyproposed to exploit the bookkeeping algorithm for tuple management.
B. Hertzberger, P. Sloot (Eds.): Proc. Int. Conf. and Exhib. onHigh-Performance Computing and Networking (HPCN Europe 1997)Lecture Notes in Computer Science 1225 (Springer, Berlin, 1997): 644{653

1 IntroductionParallel computing is nowadays the only technique that can be used in order toachieve the impressive computing power needed to solve a number of challengingproblems; as such, it is being employed by an ever growing community of usersin spite of what we feel as two main disadvantages, namely:1. harder-to-use programming models, programming techniques and develop-ment tools|if any,|which sometimes translate into programs that don'tmatch as e�ciently as expected with the underlying parallel hardware, and2. the inherently lower level of dependability that characterizes any such par-allel hardware i.e., a higher probability for events like a node's permanentor temporary failure.A real, e�ective exploitation of any given parallel computer asks for solutionswhich take into a deep account the above outlined problems.Let us consider for example the synchronous farmer-worker algorithm i.e., awell-known model for structuring data-parallel applications: a master process,namely the farmer, feeds a pool of slave processes, called workers, with someunits of work; then polls them until they return their partial results which areeventually recollected and saved. Though quite simple, this scheme may givegood results, especially in homogeneous, dedicated environments.But how does this model react to events like a failure of a worker, or moresimply to a worker's performance degradation due e.g., to the exhaustion of

any vital resource? Without substantial modi�cations, this scheme is not ableto cope with these events|they would seriously a�ect the whole applicationor its overall performances, regardless the high degree of hardware redundancyimplicitly available in any parallel system. The same unexibility prevents afailed worker to re-enter the computing farm once it has regained the properoperational state.As opposed to this synchronous structuring, it is possible for example toimplement the farmer-worker model by de-coupling the farmer from the workersby means of an intermediate module, a dispatcher which asynchronously feedsthese latter and supplies them with new units of work on an on-demand basis.This strategy guarantees some sort of a dynamic balancing of the workload evenin heterogeneous, distributed environments, thus exhibiting a higher matchingto the parallel hardware. The Live Data Structure computational paradigm,known from the LINDA context, makes this particularly easy to set up (see forexample [1,2,4]).With this approach it is also possible to add a new worker at run-time withoutany noti�cation to both the farmer and the intermediate module|the newcomerwill simply generate additional, non-distinguishable requests for work. But again,if a worker fails or its performances degrade, the whole application may fail orits overall outcome be a�ected or seriously delayed. This is particularly impor-tant when one considers the inherent loss in dependability of any parallel (i.e.,replicated) hardware.Next sections introduce and discuss a modi�cation to the above sketchedasynchronous scheme, which inherits the advantages of its parent and o�ers newones, namely:{ it allows a non-solitary, temporarily slowed down worker to be left out of theprocessing farm as long as its performance degradation exists, and{ it allows a non-solitary worker which has been permanently a�ected by somefault to be de�nitively removed from the farm,both of them without a�ecting the overall outcome of the computation, anddynamically spreading the workload among the active processors in a way thatresults in an excellent match to various di�erent MIMD architectures.2 The TechniqueFor the purpose of describing the technique we de�ne the following scenario: aMIMDmachine disposes of n+2 identical \nodes" (n > 0), or processing entities,connected by some communication line. On each node a number of independentsequential processes are executed on a time-sharing basis. A message passinglibrary is available for sending and receiving messages across the communicationline. A synchronous communication approach is used: a sender blocks until theintended receiver gets the message. A receiver blocks waiting for a message froma speci�c sender, or for a message from a number of senders. When a messagearrives, the receiver is awaken and is able to receive that message and to know the

identity of the sender. Nodes are numbered from 0 to n+1. Node 0 is connectedto an input line and node n+ 1 is connected to an output line.{ Node 0 runs:� a Farmer process, connected by the input line to an external producerdevice. From now on we consider a camera as the producer device. Acontrol line wires again the Farmer to the camera, so that this lattercan be commanded to produce new data and eventually send this dataacross the input line;� a Dispatcher process, yet to be described.{ Node n+ 1 runs a Collector process, to be described later on, connected bythe output line to an external storage device e.g., a disk;{ Each of the nodes from 1 to n is purely devoted to the execution of oneinstance of the Worker process. Each Worker is connected to the Dispatcherand to the Collector processes.
STOP STOP

STOP

NEW-RUN

(k, bk)

k

k

Farmer Dispatcher Worker

Worker

Worker

i
Collector(k, o)

SLEEP

RESUME

(k, w)

iFig. 1. Summary of the interactions among the processes.2.1 Interactions Between the Farmer and the DispatcherOn demand of the Farmer process, the camera sends it an input image. Onceit has received an image, the Farmer performs a prede�ned, static data decom-position, creating m equally sized sub-images, or blocks. Blocks are numberedfrom 1 to m, and are represented by variables bi; 1 � i � m.

The Farmer process interacts exclusively with the camera and with the Dis-patcher process.{ Three classes of messages can be sent from the Farmer process to the Dis-patcher (see Fig. 1):1. a NEW RUN message, which means: \a new bunch of data is available";2. a STOP message, which means that no more input is available so thewhole process has to be terminated;3. a couple (k; bk); 1 � k � m i.e., an integer which identi�es a particularblock (it will be referred from now on as a \block-id"), followed by theblock itself.{ The only type of message that the Dispatcher process sends to the Farmerprocess is a block-id i.e., a single integer in the range f1; : : : ;mg whichexpresses the information that a certain block has been fully processed by aWorker and recollected by the Collector (see x2.3.)At the other end of the communication line, the Dispatcher is ready to processa number of events triggered by message arrivals. For example, when a class-3message comes in, the block is stored into a work bu�er as follows:receive (k; bk)sk DISABLEDwk bk(Here, receive is the function for receiving an incoming message, s is a vector ofm integers pre-initialized to DISABLED, which represents some status informationthat will be described later on, and w is a vector of \work bu�ers", i.e., bunchesof memory able to store any block. DISABLED is an integer which is not in theset f1; : : : ;mg. The \ " sign is the assignment operator.)As the Farmer process sends a class-1 message, that is, a NEW RUN signal, theDispatcher processes that event as follows:s 0broadcast RESUMEthat is, it zeroes each element of s and then broadcasts the RESUME messageto the whole farm.When the �rst image arrives to the Farmer process, it produces a series(bi)1�i�m, and then a sequence of messages (i; bi)1�i�m. Finally, the Farmersends a NEW RUN message.Starting from the second image, and while there are images to process fromthe camera, the Farmer performs the image decomposition in advance, thuscreating a complete set of (k; bk) couples. These couples are then sent to theDispatcher on an on-demand basis: as soon as block-id i comes in, couple (i; bi)is sent out. This is done for anticipating the transmission of the couples belongingto the next run of the computation.When eventually the last block-id of a certainrun has been received, a complete set of \brand-new" blocks is already in thehands of the Dispatcher; at that point, sending the one NEW RUN message willsimultaneously enable all blocks.

2.2 Interactions Between the Dispatcher and the WorkersThe Dispatcher interacts with every instance of the Worker process.{ Four classes of messages can be sent from the Dispatcher to the Workers (seeFig. 1):1. a SLEEP message, which sets the receiver into a wait condition;2. a RESUME message, to get the receiver out of the waiting state;3. a STOP message, which makes the Worker terminate;4. a (k;w) couple, where w represents the input data to be elaborated.{ Worker j, 1 � j � n, interacts with the Dispatcher by sending it its worker-id message, i.e., the j integer. This happens when Worker j has �nisheddealing with a previously sent w working bu�er and is available for a new(k;w) couple to work with.In substance, Worker j continuously repeats the following loop:send j to Dispatcherreceive message from Dispatcherprocess messageClearly, send transmits a message. The last instruction, in dependence withthe class of the incoming message, results in a number of di�erent operations:{ if the message is a SLEEP, the Worker waits until the arrival of a RESUMEmessage, which makes it resume the loop, or the arrival of any other message,which means that an error has occurred;{ if it is a STOP message, the Worker breaks the loop and exits the farm;{ if it is a (k;w) couple, the Worker starts computing the value f(w), where f issome user-de�ned function e.g., an edge detector. If a RESUME event is raisedduring the computation of f , that computation is immediately abandonedand the Worker restarts the loop. Contrarywise, the output couple (k; f(w))is sent to the Collector process.When the Dispatcher gets a j integer fromWorker j, its expected response isa new (k;w) couple, or a SLEEP. What rules in this context is the s vector|if allentries of s are DISABLED, then a SLEEP message is sent to Worker j. Otherwise,an entry is selected among those with the minimumnon-negative value, say entryl, and a (l; bl) message is then sent as a response. sl is �nally incremented by 1.More formally, considered set S = fs 2 s j s 6= DISABLEDg; if S is non-emptyit is possible to partition S according to the equivalence relation R de�ned asfollows: 8(a; b) 2 S � S : aR b, sa = sb:So the blocks of the partition are the equivalence classes:[x] def= fs 2 S j 9y 2 f1 : : :mg 30 (s = sy) ^ (sy = x)g:

Now, �rst we consider a = minfb j 9b � 0 30 [b] 2 SRg;then we choose l 2 [a] in any way e.g., pseudo-randomly; �nally, message (l; bl) issent to Worker j, sl is incremented, and the partition is recon�gured accordingly.If S is the empty set, a SLEEP message is generated.In other words, entry si when greater than or equal to 0 represents some sortof a priority identi�er (the lower the value, the higher the priority for block bi).The block to be sent to a requesting Worker process is always selected amongthose with the highest priority; after the selection, si is updated incrementingits value by 1. In this way, the content of si represents the degree of \freshness"of block bi: it substantially counts the number of times it has been picked up bya Worker process; fresher blocks are always preferred.As long as there are \brand-new" blocks i.e., blocks with a freshness attributeof 0, these are the blocks which are selected and distributed. Note that this meansthat as long as the above condition is true, each Worker deals with a di�erentunit of work; on the contrary, as soon as the last brand-new block is distributed,the model admits that a same block may be assigned to more than one Worker.This is tolerated up to a certain threshold value; if any si becomes greaterthan that value, an alarm event is raised|too many workers are dealing withthe same input data, which might mean that they are all a�ected by the sameproblem e.g., a software bug resulting in an error when bi is being processed.We won't deal with this special case. Another possibility is that two or moreWorkers had �nished their work almost at the same time thus bringing rapidlya ag to the threshold. Waiting for the processing time of one block may supplythe answer.A value of DISABLED for any si means that its corresponding block is notavailable to be computed. It is simply not considered during the selection pro-cedure.2.3 Interactions Between the Workers and the CollectorAny Worker may send one class of messages to the Collector; no message is sentfrom this latter to any Worker (see Fig. 1).The only allowed message is the couple (k; o) in which o is the fully processedoutput of the Worker's activity on the kth block.The Collector's task is to �ll a number of \slots", namely pi; i = 1; : : : ;m,with the outputs coming from the Workers. As two or more Workers are allowedto process a same block thus producing two or more (k; o) couples, the Collectorruns a vector of status bits which records the status of each slot: if fi is FREEthen pi is \empty" i.e., it has never been �lled in by any output before; if it isBUSY, it already holds an output. f is �rstly initialized to FREE.For each incoming message from the Worker, the Collector repeats the fol-lowing sequence of operations:

receive (k; o) from Workerif fk is equal to FREEthen send k to Dispatcherpk ofk BUSYcheck-if-fullelse detectendifwhere:check-if-full checks if, due to the last arrival, all entries of f have becomeBUSY. In that case, a complete set of partial outputs has been recollected and,after some user-de�ned post-processing (for example, a polygonal approxi-mation of the chains of edges produced by the Workers), a global output canbe saved, and the ag vector re-initialized:if f is equal to BUSYthen post-process psave pf FREEendifdetect is a user-de�ned functionality|he/she may choose to compare the twoo's so to be able to detect any inconsistency and start some recovery action,or may simply ignore the whole message.Note also that an acknowledgment message (the block-id) is sent from theCollector to the Dispatcher, to inform it that an output slot has been occupiedi.e., a partial output has been gathered. This also means that the Farmer cananticipate the transmission of a block which belongs to the next run, if any.2.4 Interactions Between the Collector and the DispatcherAs just stated, upon acceptance of an output, the collector sends a block-id, sayinteger k, to the Dispatcher|it is the only message that goes from the Collectorto the Dispatcher.The Dispatcher then simply acts as follows:sk DISABLEDsend k to Farmerthat is, the Dispatcher \disables" the kth unit of work|set S as de�ned in x2.2is reduced by one element and consequently partition SR changes its shape; thenthe block-id is propagated to the Farmer (see Fig. 1).

On the opposite direction, there is only one message that may travel from theDispatcher to the Collector: the STOP message that means that no more input isavailable and so processing is over. Upon reception of this message, the Collectorstops itself, like it does any other receiver in the farm.3 Discussions and ConclusionsThe just proposed technique uses asynchronicity in order to e�ciently matchto a huge class of parallel architectures. It also uses the redundancy which isinherent to parallelism to make an application able to cope with events like e.g.,a failure of a node, or a node being slowed down, temporarily or not.{ If a node fails while it is processing block k, then no output block will betransferred to the Collector. When no more \brand-new" blocks are available,block k will be assigned to one or more Worker processes, up to a certainlimit. During this phase the replicated processing modules of the parallelmachine may be thought of as part of a hardware redundancy fault tolerantmechanism. This phase is over when any Worker module delivers its outputto the Collector and consequently all others are possibly explicitly forced toresume their processing loop or, if too late, their output is discarded;{ if a node has been for some reason drastically slowed down, then its blockwill be probably assigned to other possibly non-slowed Workers. Again, the�rst who succeeds, its output is collected; the others are stopped or ignored.In any case, from the point of view of the Farmer process, all these eventsare completely masked. The mechanism may be provided to a user in the formof some set of basic functions, making all technicalities concerning both parallelprogramming and fault tolerance transparent to the programmer.Of course, nothing prevents the concurrent use of other fault tolerance mech-anisms in any of the involved processes e.g., using watchdog timers to understandthat a Worker has failed and consequently reset the proper entry of vector f .The ability to re-enter the farm may also be exploited committing a reboot of afailed node and restarting the Worker process on that node.3.1 Reliability AnalysisIn order to compare the original, synchronous farmer-worker model with the onedescribed in this paper, a �rst step is given by observing that the synchronousmodel depicts a series system [3] i.e., a system in which each element is requirednot to have failed for the whole system to operate. This is not the case of themodel described in this paper, in which a subset of the elements, namely theWorker farm, is a parallel system [3]: if at least one Worker has not failed, so itis for the whole farm subsystem. Note how Fig. 1 may be also thought of as thereliability block diagram of this system.Considering the sole farm subsystem, if we let Ci(t); 1 � i � n be the eventthat Worker on node i has not failed at time t, and we let R(t) be the reliability

of any Worker at time t then, under the assumption of mutual independencybetween the events, we can conclude that:Rs(t) def= P (n\i=1Ci(t)) = nYi=1R(t) = (R(t))n (1)being Rs(t) the reliability of the farm as a series system, andRp(t) def= 1� P (n\i=1Ci(t)) = 1� nYi=1(1� R(t)) = 1� (1�R(t))n (2)where Rp(t) represents the reliability of the farm as a parallel system. Of coursefailures must be independent, so again data-induced errors are not considered.Figure 2 shows the reliability of the farm in a series and in a parallel system asa Worker's reliability goes from 0 to 1.
00.20.40.6

0.81
0 0.2 0.4 0.6 0.8 1Rp(t)or Rs(t) R(t)n=1 n=2n=2 n=4n=4 n=8

n=8
n=16

n=16
Fig. 2. For a �xed value t, a number of graphs of Rp(t) (the reliability of the parallelsystem) and Rs(t) (the reliability of the series system) are portrayed as functions ofR(t), the reliability of a Worker at time t, and n, the number of the components. Eachgraph is labeled with its value of n; those above the diagonal portray reliabilities ofparallel systems, while those below the diagonal pertain series systems. Note that forn = 1 the models coincide, while for any n > 1 Rp(t) is always above Rs(t) exceptwhen R(t) = 0 (no reliable Worker) and when R(t) = 1 (totally reliable, failure-freeWorker).

3.2 An Augmented LINDA ModelThe whole idea pictured in this paper may be implemented in a LINDA tuplespace manager (see for example [1,2]). Apart from the standard functions toaccess \common" tuples, a new set of functions may be supplied which dealwith \book-kept tuples" i.e., tuples that are distributed to requestors by meansof the algorithm sketched in x2.2. As an example:fout (for fault tolerant out) may create a book-kept tuple i.e., a content-addressable object with book-kept accesses;frd (fault tolerant rd) may get a copy of a matching book-kept tuple, chosenaccording to the algorithm in x2.2;fin (fault tolerant in) may read-and-erase a matching book-kept tuple, chosenaccording to the algorithm in x2.2,and so on. The ensuing augmented LINDA model results in an abstract, elegant,e�cient, dependable, and transparent mechanism to exploit a parallel hardware.3.3 Future DirectionsThe described technique is currently being implemented on a Parsytec CC sys-tem with the EPX/AIX environment [5] using PowerPVM/EPX [6], a homo-geneous version of the PVM message passing library; it will also be tested inheterogeneous, networked environments managed by PVM. Some work towardsthe de�nition and the development of an augmented LINDA model is currentlybeing done.Acknowledgments. This project is partly sponsored by the Belgian Interuniver-sity Pole of Attraction IUAP-50, by an NFWO Krediet aan Navorsers, and bythe Esprit-IV project 21012 EFTOS. Vincenzo De Florio is on leave from Tec-nopolis CSATA Novus Ortus. Geert Deconinck has a grant from the FlemishInstitute for the Promotion of Scienti�c and Technological Research in Industry(IWT). Rudy Lauwereins is a Senior Research Associate of the Belgian NationalFund for Scienti�c Research.References1. Carriero, N., Gelernter, D. How to write parallel programs: a guide to the perplexed.ACM Comp. Surv. 21 (1989) 323{3572. Carriero, N., Gelernter, D. LINDA in context. CACM 32 (1989) vol.4 444{5583. Johnson, B.W.: Design and analysis of fault-tolerant digital systems. (Addison-Wesley, New York, 1989)4. De Florio, V., Murgolo, F.P., Spinelli, V.: PvmLinda: Integration of two di�erentcomputation paradigms. Proc. First EuroMicro Conf. on Massively Parallel Com-puting Systems, Ischia, Italy, 2{6 May 19945. Anonymous. Embedded Parix Programmer's Guide. In Parsytec CC Series Hard-ware Documentation. (Parsytec GmbH, Aachen, 1996)6. Anonymous. PowerPVM/EPX for Parsytec CC Systems. (Genias Software GmbH,Neutraubling, 1996)

