A SHEAF OF HOCHSCHILD COMPLEXES ON QUASI-COMPACT OPENS

WENDY LOWEN

(Communicated by Ted Chinburg)

ABSTRACT. For a scheme X, we construct a sheaf C of complexes on X such that for every quasi-compact open $U \subseteq X$, $C(U)$ is quasi-isomorphic to the Hochschild complex of U (Lowen and Van den Bergh, 2005). Since C is moreover acyclic for taking sections on quasi-compact opens, we obtain a local to global spectral sequence for Hochschild cohomology if X is quasi-compact.

1. Introduction

Let X be a scheme over a field k. In [11], the Hochschild complex $C(X, \mathcal{O}_X)$ of X is defined to be the Hochschild complex of the abelian category $\text{Mod}(X)$ of sheaves on X. Its cohomology theory coincides with various notions of Hochschild cohomology of X considered in the literature, for example by Swan [14] and Kontsevich [8], which in the commutative case agree with the earlier theory of Gerstenhaber-Schack [2].

For a basis b of affine opens of X, there is an associated k-linear category (also denoted by b) and there is a quasi-isomorphism

$$C(X, \mathcal{O}_X) \cong C(b)$$

where $C(b)$ is the Hochschild complex of the k-linear category b ([2,1]). The Hochschild complexes have a considerable amount of extra structure containing in particular the cup-product and the Gerstenhaber bracket. This extra structure is important for deformation theory. It is captured by saying that the complexes are B_∞-algebras [3,10], and \cong as above means the existence of an isomorphism in the homotopy category of B_∞-algebras. Let \mathcal{O}_b be the restriction of \mathcal{O}_X to the basis b. Then \cong above is reflected in the fact that there is an equivalence between the deformation theory of $\text{Mod}(X)$ as an abelian category [12] and the deformation theory of \mathcal{O}_b as a twisted presheaf [9].

If we consider the restrictions $b|_U$ of b to open subsets $U \subseteq X$, we obtain a presheaf of Hochschild complexes on X:

$$C_b : U \mapsto C(b|_U).$$
To relate the “global” Hochschild complex $C(b)$ to the “local” Hochschild complexes $C(b|U)$ of certain open subsets $U \subset X$, it would be desirable for C_b to be a sheaf, which is preferably acyclic for taking global sections. Unfortunately, C_b is not even a separated presheaf with regard to finite coverings. In this paper, we construct a sheaf C of B_∞-algebras such that

1. $C(U, \mathcal{O}_U) \cong C(U)$ for U quasi-compact open.
2. C is acyclic for taking quasi-compact sections, i.e. $R\Gamma(U, C) = C(U)$ for U quasi-compact open.

For U quasi-compact open, $C(U)$ is obtained as a colimit of complexes $C(b|U)$ over a collection $\mathcal{B}(U)$ of bases of U (\mathcal{B}). The properties of C depend upon the choice of a good presheaf B of bases (Definition 2.1).

From properties (1) and (2), we readily deduce the existence of a local to global spectral sequence

$$E_2^{p,q} = H^p(X, H^qC) \Rightarrow H^{p+q}C(X)$$

for Hochschild cohomology for a quasi-compact scheme X (Theorem 4.1).

We should remark that for a smooth separated scheme, another sheaf of B_∞-algebras D_{poly} is considered, for example, by Kontsevich [7], Van den Bergh [15], and Yekutieli [16]. Let $C(\mathcal{O}(U))$ be the Hochschild complex of the ring $\mathcal{O}(U)$, and let $C_{\text{poly}}(\mathcal{O}(U))$ be the subcomplex which consists of the polydifferential operators, i.e. multilinear maps $\mathcal{O}(U)^{\otimes p} \rightarrow \mathcal{O}(U)$ which are differential operators in each argument. Then for U affine open, D_{poly} satisfies

$$D_{\text{poly}}(U) \cong C_{\text{poly}}(\mathcal{O}(U)).$$

The complex $R\Gamma(X, D_{\text{poly}})$ computes the Hochschild cohomology of X, but a priori does not inherit the structure of a B_∞-algebra. One way to overcome this problem is by using a fibrant resolution $D_{\text{poly}} \rightarrow F_{\text{poly}}$ in the model category of presheaves of B_∞-algebras as defined by Hinich [5]. Alternatively, in [15, Appendix B], Van den Bergh constructs a quasi-isomorphic object $R\Gamma(X, D_{\text{poly}})^\text{tot}$ that does inherit this structure (the construction, which uses pro-hypercoverings, is functorial and inherits any operad-algebra structure). Moreover, $R\Gamma(X, D_{\text{poly}})^\text{tot}$ is isomorphic to $C(X, \mathcal{O}_X)$ in the homotopy category of B_∞-algebras [15 Theorem 3.1, Appendices A, B] and by [15 Appendix B.10], we actually have $R\Gamma(X, D_{\text{poly}})^\text{tot} \cong \Gamma(X, F_{\text{poly}})$ in the same sense.

Finally, as to the existence of a local to global spectral sequence for Hochschild cohomology for a general ringed space (X, \mathcal{O}_X), a proof using hypercoverings is in preparation [10].

2. Presheaves of Hochschild complexes

2.1. The Hochschild complex of a scheme.

Throughout, k is a field. Let (X, \mathcal{O}_X) be a scheme over k and let b be a basis of affine opens. We use the same notation for the associated k-linear category with b as objects and

$$b(V, U) = \begin{cases} \mathcal{O}_X(V) & \text{if } V \subset U, \\ 0 & \text{else.} \end{cases}$$

In [11 §7.1], the Hochschild complex $C(X, \mathcal{O}_X)$ of X is defined, and in [11 Theorem 7.3.1], there is shown to be a quasi-isomorphism

$$C(X, \mathcal{O}_X) \cong C(b),$$
where $C(b)$ is the Hochschild complex of the k-linear category b \[13\], i.e.

$$C^p(b) = \prod_{U_0, \ldots, U_p \in b} \text{Hom}_k(b(U_{p-1}, U_p) \otimes_k \cdots \otimes_k b(U_0, U_1), b(U_0, U_p)),$$

and the differential is the usual Hochschild differential. More concretely, we have

$$C^p(b) = \prod_{U_0 \subseteq U_1 \subseteq \cdots \subseteq U_p \in b} \text{Hom}_k(O_X(U_{p-1}) \otimes_k \cdots \otimes_k O_X(U_0), O_X(U_0)),$$

and

$$C^0(b) = \prod_{U_0 \in b} O_X(U_0).$$

Hence this complex combines the nerve of the poset b with the algebraic structure of O_X. In fact, both complexes are B_{∞}-algebras $[3, 6]$, and \cong means the existence of an isomorphism in the homotopy category of B_{∞}-algebras.

2.2. The presheaf C_B of Hochschild complexes. For an arbitrary open subset $U \subset X$, put $b_U = \{B \in b \mid B \subset U\}$. Then $b|_U$ is a basis of affine opens for the scheme (U, O_U); hence we have a quasi-isomorphism $C(U, O_U) \cong C(b|_U)$.

For $V \subset U$ there is an obvious restriction map $C(b|_U) \rightarrow C(b|_V)$.

We thus obtain a presheaf

$$C_b : U \mapsto C_b(U) = C(b|_U)$$

of Hochschild complexes on X. It is readily seen that in general, C_b fails to be a sheaf. Indeed, suppose we have $W \in b$ and $W = U \cup V$ with U and V proper open subsets. Then there is a non-zero element $\varphi = (\varphi_{U_0})_{U_0} \in C^0_b(W)$ with

$$\varphi_{U_0} = \begin{cases} 1 \in O_X(U_0) & \text{if } U_0 = W, \\ 0 & \text{else}, \end{cases}$$

whose restriction to U and V is zero. In this example, the fact that $W = U \cup V$ makes the presence of W in b redundant. This suggests that to obtain a sheaf, we must work with variable bases, as will be done in the next section.

2.3. The presheaf C_B of colimit Hochschild complexes. In this section instead of considering $C_b(U)$ for a fixed basis b of X, we will consider a colimit of complexes $C(b)$ over different bases b of U. More precisely, we are looking for collections $B(U)$ of bases of affine opens of U, which allow us to define “colimit Hochschild complexes”

$$C_B(U) = \text{colim}_{b \in B(U)} C(b).$$

Here $B(U)$ is ordered by \supset and $b \supset b'$ corresponds to the canonical $C(b) \rightarrow C(b')$.

Since we do not want the colimit to change the cohomology, we want it to be a filtered colimit. In particular, this is the case if $B(U)$ is closed under intersections, i.e. if we have the operation

$$B(U) \times B(U) \longrightarrow B(U) : (b, b') \mapsto b \cap b'.$$

Note that in general, $b \cap b'$ need not even be a basis. If $B(U) \neq \varnothing$ and we have \[1\], then there are quasi-isomorphisms $C(U, O_U) \cong C_B(U).$
For \(C_B : U \mapsto C_B(U) \) to become a presheaf, we need restriction operations

\[
(2) \quad B(U) \longrightarrow B(V) : b \mapsto b|_V = \{ B \in b \mid B \subset V \}
\]

for \(V \subset U \), making \(B \) itself into a presheaf of collections of bases. In this way, \(C_B \) clearly becomes a presheaf of \(B_{\infty} \)-algebras on \(X \).

In order to prove Proposition 3.1 in the next section, we need two more operations on \(B \). First, we want to take the union of bases coinciding on the intersection of their domains; i.e. we want the operation

\[
(3) \quad B(U) \times_{B(U \cap V)} B(V) \longrightarrow B(U \cup V) : (b, b') \mapsto b \cup b'.
\]

Second, we want to refine bases by plugging in finer bases; i.e. for \(V \subset U \) we want the operation

\[
(4) \quad B(U) \times B(V) \longrightarrow B(U) : (b_U, b_V) \mapsto b_U \circ b_V = \{ B \in b_U \mid B \subset V \implies B \in b_V \}.
\]

Note that (1) is just a special case of (4). Also, combining (2), (3) and (4) yields the following refinement operation on \(B \). If \(\delta \) is any finite collection of open subsets of \(U \) (not necessarily covering \(U \)), we have

\[
(5) \quad B(U) \longrightarrow B(U) : b \mapsto b_{\delta} = \{ B \in b \mid V \subset \delta \implies \exists D \in \delta, V \subset D \}.
\]

Definition 2.1. \(B \) is called good if \(B(X) \neq \emptyset \) and \(B \) has the operations (1),..., (5).

We will now show that there exists a good \(B \).

Proposition 2.2.

1. If \(B \) with \(B(X) \neq \emptyset \) has (2), (3) and (4), then it is good.
2. Let \(b \) be any basis of affine opens of \(X \). There exists a smallest good \(B \) with \(b \in B(X) \). This \(B \) is given by

\[
B(U) = \{(b|_U)_{\delta_1},...,\delta_n \mid \delta_1 \subset \text{open}(U), |\delta_1| < \infty \}.
\]

Proof. (1) follows from the discussion above. For (2), first note that \(B \) is obviously contained in any good \(B' \). If \(V \subset U \) and \(\delta \) is a collection in \(U \), we put \(\delta|_V = \{ D \cap V \mid D \in \delta \} \). For any basis \(b' \) of \(U \), we have \((b'|_V)_{\delta|_V} = (b'|_V)_{\delta|_V} \) holds. For (1), note that \((b|_U)_{\delta_1},...,\delta_n \circ (b|_V)_{\epsilon_1},...,\epsilon_m = (b|_U)_{\delta_1},...,\delta_n,\epsilon_1,...,\epsilon_m \). Finally for (3), if \((b|_U)_{\delta_1},...,\delta_n \) and \((b|_V)_{\epsilon_1},...,\epsilon_m \) coincide on \(U \cap V \), then their union equals \((b|_{U \cup V})_{\delta_1},...,\delta_n,\epsilon_1,...,\epsilon_m,\{U,V\}) \). \(\square \)

3. Sheaves of Hochschild complexes

3.1. **The presheaf \(C_B \) for a good \(B \).** From now on, \(B \) is a good presheaf of bases, and we consider the presheaf \(C_B \) of colimit Hochschild complexes as defined in (2.3).

Proposition 3.1.

1. \(C_B \) is flabby.
2. \(C_B \) satisfies the sheaf condition with respect to finite coverings.

Proof. (2) By induction, we may consider \(U = U_1 \cup U_2 \) and the given elements \(\varphi_i \in C_B(U_i) \) such that \(\varphi_i|_{U_{12}} = \varphi_2|_{U_{12}} \), where \(U_{12} = U_1 \cap U_2 \). Let \(\varphi_1 \) be a representing element in \(C^p(b_1) \) for a basis \(b_1 \in B(U_1) \) and let \(b' \subset b_1|_{U_{12}} \cap b_2|_{U_{12}} \) be a basis in \(B(U_{12}) \) for which \(\varphi_1|_{U_{12}} = \varphi_2|_{U_{12}} \) coincide in \(C^p(b') \). Put \(b'_1 = b_1 \circ b' \in B(U_1) \) (using (1)) and put \(b = b'_1 \cup b'_2 \in B(U \cup V) \) (using (3)). We can now easily give an element \(\varphi \in C^p(b) \), which represents a glueing of \(\varphi_1 \) and \(\varphi_2 \) on \(U \), by specifying its
value for $V_0 \subset \cdots \subset V_p$; if $V_p \in b'_i$, we use the element specified by φ_i. This is well
defined since $V_p \in b'_i \cap b'_2$ implies $V_p \in b'$. It is a gluing of the φ_i since φ and φ_i
coincide on $b'_i \subset b_i$.

Now suppose we have an element $\varphi \in \mathcal{C}^p(b')$ for $b' \in \mathcal{B}(U)$ and suppose we
have bases $b_i \subset b'_i|V_i$ for which $\varphi|_{U_i}$ becomes zero in $\mathcal{C}^p(b_i)$. If we put $b'_i = b_i \circ (b_1|V_{12} \cap b_2|V_{12})$ and $b = b'_1 \cup b'_2$, then φ becomes zero in $\mathcal{C}^p(b')$.

(1) Consider the restriction map $\mathcal{C}^p(U) \to \mathcal{C}^p(V)$ for $V \subset U$. If $\varphi \in \mathcal{C}^p(b)$
is a representing element in the codomain, we can lift it to $\bar{\varphi} \in \mathcal{C}^p(b' \circ b)$, where $b' \in \mathcal{B}(U)$ is arbitrary and the value of $\bar{\varphi}$ for $V_0 \subset \cdots \subset V_p$ is the value specified by
φ if $V_p \subset V$ and is zero otherwise. □

3.2. The sheaf \mathcal{C}_{qc} of colimit Hochschild complexes. Let $\mathcal{C}(X) \subset \text{open}(X)$
be the subposet of quasi-compact opens with the induced Grothendieck topology. We
immediately get:

Proposition 3.2. The restriction \mathcal{C}_{qc} of \mathcal{C} to $\mathcal{C}(X)$ is a sheaf.

Proof. Since every covering of a quasi-compact $U \subset X$ has a finite subcovering,
it suffices to check the sheaf condition on finite coverings, which is done in Proposition 3.1. □

3.3. The sheaf $\mathcal{C} = \mathcal{C}_G$. Let $\text{Pr}(X)$ and $\text{Sh}(X)$ (resp. $\text{Pr}_{qc}(X)$ and $\text{Sh}_{qc}(X)$) be
the categories of presheaves and sheaves on X (resp. on $\mathcal{C}(X)$). Since $\mathcal{C}(X)$ is a
category of X, by the (proof of the) Lemme de Comparaison [1], there is a commutative square

\[
\begin{array}{ccc}
\text{Pr}(X) & \xrightarrow{(-)_{qc}} & \text{Pr}_{qc}(X) \\
\alpha \downarrow & & \downarrow \alpha' \\
\text{Sh}(X) & \xrightarrow{(-)_{qc}} & \text{Sh}_{qc}(X)
\end{array}
\]

in which the vertical arrows are sheafifications, the horizontal arrows are restrictions
to $\mathcal{C}(X)$, and the lower horizontal arrow is an equivalence. Let $\mathcal{C} = a_!\mathcal{C}_G$ be the
sheafification of \mathcal{C}_G.

Proposition 3.3. If $U \subset X$ is a quasi-compact open, then

\[\mathcal{C}_G(U) \to \mathcal{C}(U)\]

is an isomorphism. In particular, there is a quasi-isomorphism

\[\mathcal{C}(U, \mathcal{O}_U) \cong \mathcal{C}(U)\]

Proof. By Proposition 3.2 we have $\mathcal{C}_{qc} \cong a_! \mathcal{C}_{qc} \cong (a_! \mathcal{C}_G)_{qc}$. □

Proposition 3.4. \mathcal{C}^p is acyclic for taking quasi-compact sections; i.e. for $U \subset X$
a quasi-compact open and $i > 0$, we have $H^i(U, \mathcal{C}^p) = 0$.

Proof. By Propositions 3.1 and 3.3 the restriction maps $\mathcal{C}^p(X) \to \mathcal{C}^p(U)$ are
surjective for U quasi-compact. The rest of the proof is along the lines of the
classical proof that flabby sheaves are acyclic for taking global sections. □
4. LOCAL TO GLOBAL SPECTRAL SEQUENCE

In this section, \(X \) is a quasi-compact scheme and \(\mathcal{C} \) is the sheaf of complexes of \(\mathcal{O}_X \). In particular, there are quasi-isomorphisms \(\mathcal{C}(U, \mathcal{O}_U) \cong \mathcal{C}(U) \) for \(U \) quasi-compact open. We obtain a local to global spectral sequence for Hochschild cohomology:

Theorem 4.1. There is a local to global spectral sequence

\[
E_2^{p,q} = H^p(X, H^q \mathcal{C}) \Rightarrow H^{p+q}(\mathcal{C}(X)).
\]

Proof. Since, by Proposition 3.4, \(\mathcal{C} \) is a bounded below complex of acyclic objects for \(\Gamma \), \(\mathcal{C} \) is itself acyclic, i.e. \(R\Gamma(X, \mathcal{C}) = \mathcal{C}(X) \). So the above is just the hypercohomology spectral sequence \([4, 2.4.2]\) for the complex of sheaves \(\mathcal{C} \). \(\square \)

References

Department DEWM, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

E-mail address: wlowen@vub.ac.be